M-QUASI-HYponORMAL COMPOSITION OPERATORS

PUSHPA R. SURI and N. SINGH

Department of Mathematics
Kurukshetra University
Kurukshetra - 132 119, India

(Received November 12, 1985)

ABSTRACT. A necessary and sufficient condition is obtained for M-quasi-hyponormal composition operators. It has also been proved that the class of M-quasi-hyponormal composition operators coincides with the class of M-paranormal composition operators. Existence of M-hyponormal composition operators which are not hyponormal; and M-quasi-hyponormal composition operators which are not M-hyponormal and quasi-hyponormal are also shown.

KEY WORDS AND PHRASES. M-hyponormal, M-quasi-hyponormal, M-paranormal, normal composition operators.

1980 AMS SUBJECT CLASSIFICATION CODE. 47

1. PRELIMINARIES.

Let \((X, S, m) \) be a sigma-finite measure space and \(T \) a measurable transformation from \(X \) into itself (that is one \(m(T^{-1}(E)) = 0 \) whenever \(m(E) = 0 \) for \(E \in S \)). Then the equation \(C_T f = f \circ T \) for every \(f \) in \(L^2(m) \) defines a linear transformation. If \(C_T \) is bounded with range in \(L^2(m) \), then it is called composition operator. If \(X = \mathbb{N} \) the set of all non-zero positive integers and \(m \) is counting measure on the family of all subsets of \(\mathbb{N} \), then \(L^2(m) = l^2 \) (the Hilbert space of all square summable sequences).

Let \(f_o = \frac{dmT^{-1}}{dm} \) be the Radon-Nikodym derivative of the measure \(mT^{-1} \) with respect to the measure \(m \),

\[
\frac{dm(ToT)^{-1}}{dmT^{-1}} = g_o, \quad \frac{dm(ToT)^{-1}}{dm} = h_o
\]

Then \(h_o = f_o \cdot g_o \).

Let \(B(H) \) denote the Banach algebra of all bounded linear operators on the Hilbert space \(H \). An operator \(T \in B(H) \) is called M-quasi-hyponormal if there exists \(M > 0 \) such that

\[
M^2 T^* (T^2 - (TT)^2) \geq 0
\]
or equivalently \(||T^2x|| \leq M||T^2x||\) for all \(x\) in \(H\). \(T\) is said to be M-paranormal [2] if for all unit vectors \(x\) in \(H\)

\[||Tx||^2 \leq M||T^2x||. \]

\(T\) is said to be M-hyponormal [2] if

\[||Tx|| \leq M||Tx|| \] for all \(x\) in \(H\).

The purpose of this paper is to generalize the results on quasi-hyponormal composition operators in [3] for M-quasi-hyponormal composition operators.

2. M-QUASI-HYPONORMAL COMPOSITION OPERATORS.

In this section we obtain a necessary and sufficient condition for M-quasi-hyponormal composition operators and then show that the class of M-quasi-hyponormal composition operators on \(L^2\) coincides with the class of M-paranormal composition operators. We also show the existence of M-hyponormal composition operators which are not hyponormal, and M-quasi-hyponormal composition operators which are not M-hyponormal and quasi-hyponormal.

Theorem 2.1. Let \(C_T \in B(L^2)\). Then \(C_T\) is M-quasi-hyponormal if and only if

\[f^2 \leq M^2 h_0. \]

Proof. Since for any \(f\) in \(L^2\),

\[(C_T^2 C_T^* f, f) = (C_T^* C_T f, f) = \int h_0 |f|^2 \, dm, \]

\[= (M h_0 f, f), \]

where \(M h_0\) is the multiplication operator induced by \(h_0\), therefore \(C_T^2 C_T^* = M h_0\).

Similarly, it can be seen that \(C_T^* C_T = M f_0\). \(C_T\) is M-quasi-hyponormal if and only if

\[M^2 C_T^2 C_T^* - (C_T^* C_T)^2 \geq 0. \]

This implies that

\[M^2 M h_0 - M^2 f_0 \geq 0, \]

that is \(f_0^2 \leq M^2 h_0\).

Hence the result.

Corollary. Let \(C_T \in B(L^2)\). Then \(C_T\) is M-quasi-hyponormal if and only if

\[f_0 \leq M^2 g_0. \]

Proof. Since \(h_0 = f_0 g_0\) and \(f_0\) is positive, therefore, by above theorem we get the result.

Theorem 2.2. Let \(C_T \in B(L^2)\). Then \(C_T\) is M-quasi-hyponormal if and only if \(C_T\) is M-paranormal.

Proof. Necessity is true for any bounded operator \(A\). For the sufficiency, let \(C_T\) be M-paranormal, then
M-QUASI-HYPONORMAL COMPOSITION OPERATORS

\[||C_T X_{\{n\}}||^2 \leq M ||C_T^2 X_{\{n\}}|| \quad \text{for all } n \in \mathbb{N} \]

or

\[\int |X_{\{n\}} \circ T|^2 dm \leq M \left(\int |X_{\{n\}} \circ T^2|^2 dm \right)^{1/2} \]

or

\[\int |X_{\{n\}}|^2 dm T^{-1} \leq M \left(\int |X_{\{n\}}|^2 dm (T^o T)^{-1} \right)^{1/2} \]

or

\[\int f_{\{n\}} \circ o dm \leq M \left(\int f_{\{n\}} \circ o^2 \right)^{1/2} \]

or

\[f^2_{\circ o}(n) \leq M^2 h_{\circ o}(n) \quad \text{for all } n \in \mathbb{N}. \]

Hence \(f^2_{\circ o} \leq M^2 h_{\circ o} \); \(C_T \) is M-quasi-hyponormal.

THEOREM 2.3. Let \(C_T \in B(z^2) \) and \(T: \mathbb{N} \to \mathbb{N} \) be one-to-one. Then the following are equivalent.

(i) Normal
(ii) M-hyponormal
(iii) M-quasi-hyponormal.

PROOF. (i) implies (ii), (ii) implies (iii) are always true for any bounded operator \(A \). We show that (iii) implies (i). Let \(C_T \) be M-quasi-hyponormal. Then

\[||C_T^* C_T f|| \leq M ||C_T f|| \quad \text{for all } f \in z^2. \]

Now \(T \) is onto because if \(T \) is not onto then \(N|T(N)| \) is non-empty and for \(n \in \mathbb{N} \)

\[||C_T X_{\{n\}}|| = 1 \quad \text{and} \quad ||C_T^* X_{\{n\}}|| = 0. \]

There exists no \(M>0 \) such that \(C_T \) is M-quasi-hyponormal which is a contradiction.

Since \(T \) is one-to-one, therefore, \(T \) is invertible, by Theorem 2.2 [4] \(C_T \) is invertible and \(C_T \) is normal by Theorem 2.1 [3].

Here we give an example of a composition operator on \(z^2 \) which is M-hyponormal but not hyponormal.

EXAMPLE 1. Let \(T: \mathbb{N} \to \mathbb{N} \) be the mapping such that

\[T(1) = 2, \quad T(2) = 1, \quad T(3) = 2 \]

\[T(3n+m) = n+2, \quad m = 1,2,3 \quad \text{and} \quad n \in \mathbb{N}. \]

Then \(C_T \) is not hyponormal as \(f_{\circ o} \neq g_{\circ o} \) for \(n = 1. \) \(C_T \) is M-hyponormal for \(M \geq \sqrt{2}. \)

EXAMPLE 2. Let \(T: \mathbb{N} \to \mathbb{N} \) be defined by \(T(1) = 2, \ T(2) = 1, \ T(3n+m) = n+1, \)

\[m = 0,1,2 \quad \text{and} \quad n \in \mathbb{N}. \]

Then \(C_T \) is \(\sqrt{2} \) - quasi-hyponormal but \(C_T \) is not \(\sqrt{2} \)

-hyponormal. \(C_T \) is not quasi-hyponormal also.

REFERENCES

Submit your manuscripts at
http://www.hindawi.com