ANOTHER NOTE ON KEMPISTY’S GENERALIZED CONTINUITY

J.P. LEE

Department of Mathematics
State University of New York
College at Old Westbury
Old Westbury, NY 11568

and

Z. PIOTROWSKI

Department of Mathematical & Computer Sciences
Youngstown State University
Youngstown, OH 44535

(Received September 23, 1987 and in revised form November 11, 1987)

ABSTRACT. Under a fairly mild completeness condition on spaces Y and Z we show that every x-continuous function \(f: X \times Y \times Z \to M \) has a "substantial" set \(C(f) \) of points of continuity. Some odds and ends concerning a related earlier result shown by the authors are presented. Further, a generalization of S. Kempisty's ideas of generalized continuity on products of finitely many spaces is offered. As a corollary from the above results, a partial answer to M. Talagrand's problem is provided.

KEYS WORDS AND PHRASES. quasi-continuity, x-continuity, separate and joint continuity, Baire spaces.

1980 AMS SUBJECT CLASSIFICATION CODE. 54C10, 54C30.

1. x-CONTINUITY.

The notion of symmetric quasi-continuity introduced by S. Kempisty [1] has been generalized in Lee and Piotrowski [2], to x-continuity. In what follows let \(X, Y, Z \) and \(T \) be spaces. Following Lee and Piotrowski [2] a function \(f: X \times Y \times Z \to T \) is x-continuous if for every \((p,q,r) \in X \times Y \times Z \), for every neighborhood \(U \times V \times W \) of \((p,q,r) \) and for every neighborhood \(N \) of \(f(p,q,r) \) there exists a neighborhood \(U' \) of \(p \) with \(U' \subseteq U \) and nonempty open sets \(V' \) and \(W' \) with \(V' \subseteq V \) and \(W' \subseteq W \) such that for all \((x,y,z) \in U' \times V' \times W' \) it follows that \(f(x,y,z) \in N \).

We shall first show that under certain general assumptions concerning the spaces, x-continuous functions have "large" sets of points of joint continuity. In order to do this we first list some necessary definitions.

Let \(A \) be an open covering of a space \(X \). Then a subset \(S \) of \(X \) is said to be A-small if \(S \) is contained in a member of \(A \). A space \(X \) is called strongly countably complete if there exists a sequence \(\{A_i: i=1,2,\ldots\} \) of open coverings of \(X \) such that and sequence \(\{F_i\} \) of \(A_i \)-small, closed subsets of \(X \) for which \(F_i \supseteq F_{i+1} \) has a non-
empty intersection.

The class of strongly countably complete spaces include countably compact and complete metric spaces. This fact follows easily from a theorem due to A. Arhangel'skiï [3] and Z. Frolik [4] which states that in the class of completely regular spaces, Čech-complete and strongly countably complete spaces coincide (Engelking [5]), see also Frolik [4], where some other properties of these spaces such as their invariance under taking closed, open subspaces or products are discussed.

A space X is called quasi-regular, (Oxtoby [6]) if for every nonempty open set u, there is a nonempty open set V such that $clV \subset u$. Obviously, every regular space is quasi-regular.

Let us recall that a function $f: X \times Y \to Z$ is said to be quasi-continuous with respect to x, (Kempisty [1], p.188,) if for every $(p,q) \in X \times Y$, fore very neighborhood N of $f(p,q)$ and every neighborhood $U \times V$ of (p,q) there exists a neighborhood U' of p with $U' \subset U$ and a nonempty open set $V' \subset V$ such that for all $(x,y) \in U' \times V'$ we have $f(x,y) \in N$. Quasi-continuity with respect to y can be defined similarly.

LEMMA 1. (Lee and Piotrowski [2], Lemma 3 p. 383). Let X, Y, Z and T be spaces and let $F: X \times Y \to Z + T$ be a function. Then F is x-continuous if and only if $g: X \times S + T$ is quasi-continuous with respect to x, where $S = Y \times Z$ and $g(x,(y,z)) = F(x,y,z)$.

THEOREM 2. Let X be a space, Y and Z be spaces such that $Y \times Z$ is quasi-regular, strongly countably complete and let M be metric. If $f: X \times Y \times Z \to M$ is x-continuous then for every $x \in X$, the set $C(f)$ of continuity points of f is dense G_δ subset in $(x) \times Y \times Z$.

PROOF. In view of Lemma 1 it is sufficient to prove the following:

CLAIM. Let X be a space, Y be a quasi-regular, strongly countably complete and Z be metric. If $f: X \times Y \times Z \to M$ is quasi-continuous with respect to x, then for all $x \in X$ the set of points of joint continuity of f is a dense G_δ subset of $\{x\} \times Y$.

PROOF. First we will prove that the set of points of joint continuity of f is dense in $(x) \times Y$. Let $x \in X$, $y \in Y$ and $U \times V$ be any neighborhood U of x, contained in U, and a nonempty open set $V^1 \subset V$ such that for all (x',y') and (x'',y'') in $U^1 \times V^1$, we have $\rho(f(x',y'), f(x'',y'')) < 1$. Without loss of generality we may assume that V^1 is contained in an element A_1 of the covering \mathcal{A}_1 of Y. Let W^1 be a nonempty open set such that $cl W^1 \subset V^1$. So $cl W^1$ is A_1-small. Then $U^1 \times W^1$ is a neighborhood of (x,y_1), where $y_1 \in W^1$, and since f is quasi-continuous with respect to x at (x,y_1), there is a neighborhood U^2 of x, contained in U^1 and a nonempty open set $V^2 \subset W^1$, such that for all (x',y') and (x'',y'') in $U^2 \times V^2$ we have $\rho(f(x',y'), f(x'',y'')) < 1$. Similarly, we may assume that V^2 is contained in an element A_2 of the covering \mathcal{A}_2. Let W^2 be a nonempty open set such that $cl W^2 \subset V^2$. We see, that $cl W^2$ is A_2-small.

Now, proceeding by induction we get a neighborhood $U^n \times V^n$ of (x,y_n), $y_n \in V^n$, such that for all (x',y') and (x'',y'') in $U^n \times V^n$, we have $\rho(f(x',y'), f(x'',y'')) < 1/n$ and that V^n is contained in an element A_n of the covering \mathcal{A}_n of Y. Moreover, there is a nonempty open sets V^n such that $V^{n+1} \subset cl W^n \subset V^n$. Thus each $cl W^n$ is A_n-small, obviously $cl W^n \cap cl W^{n+1} = \emptyset$. Let $n=1$
Then \(y^* \in \bigcap_{n=1}^{\infty} \text{cl } W^n \). Then
\[
(x, y^*) \in \bigcap_{n=1}^{\infty} (U^n \times \text{cl } W^n) \subseteq \bigcap_{n=1}^{\infty} (U^n \times V^n) \subseteq U \times V.
\]

Thus \((x, y^*) \in (U \times V) \cap ([x] \times Y)\) and \((x, y^*)\) is a point of joint continuity of \(f\). This shows the density of the set of points of joint continuity of \(f\) in the set \([x] \times Y\).

The proof that this set is \(G_\delta\) subset of \([x] \times Y\) easily follows, when we recall that the function \(f\) takes values in the metric space \(Z\). This completes the proof of Claim.

Thus, Theorem 2 is shown.

The forthcoming, Proposition 3 is contained in Lemma 5.1 of [6], since any quasi-regular strongly countably complete space is pseudo-complete; take \(B(n) = \) the class of all nonempty open sets that are \(A_n\)-small. Then \(\{B(n)\}\) is a sequence of (pseudo-) bases that shows \(X\) to be pseudo-complete.) We would like to thank the referee who make the above observation.

Proposition 3. (Oxtoby [6], Lemma 5.1) Every quasi-regular strongly countably complete space \(X\) is a Baire space.

Remark 4. Observe that neither base countability nor metrizability assumptions are made on the considered spaces \(X, Y, Z\) in Theorem 1 while in Theorem 2 of [2] the same conclusion concerning the set of points of continuity is obtained under an extra assumption that \(X\) is first countable, \(Y\) is Baire, \(Z\) is second countable in a neighborhood of any of its points and such that \(Y \times Z\) is Baire.

2. Conditions implying \(x\)-continuity - Counter-examples.

Given spaces \(X\) and \(Y\); a function \(f: X \rightarrow Y\) is said to be quasi-continuous (Martin [8], compare Kempisty [1]) if for every \(x \in X\) and for every neighborhood \(U\) of \(x\) and for every neighborhood \(V\) of \(f(x)\) have: \(U \cap \text{Int } f(V) \neq \emptyset\).

The main result of Lee and Piotrowski [2] is the following:

Theorem A. (Lee and Piotrowski [2], Theorem 1, p. 383). Let \(X\) be first countable, \(Y\) be Baire, \(Z\) be second countable such that \(Y \times Z\) is Baire and let \(T\) be regular. If \(f: X \times Y \times Z \rightarrow T\) is:

1. continuous at \(X \times \{y\} \times \{z\}, y \in Y, z \in Z\), and
2. quasi-continuous at points of \(\{x\} \times Y \times \{z\}\) for all \(x \in X\) and \(z \in Z\), and
3. quasi-continuous at points of \(\{x\} \times \{y\} \times Z\) for all \(x \in X\) and \(y \in Y\)

then \(f\) is \(x\)-continuous.

The first natural question which comes up is to check whether the converse of Theorem A is true. Apparently, the following Example 5 settles this question in the negative.

Example 5. Let \(f: \mathbb{R}^3 \rightarrow \mathbb{R}\) be defined by
\[
f(x, y, z) = \begin{cases}
\sin \frac{1}{x^2 + y^2 + z^2}, & \text{if } (x, y, z) \neq (0, 0, 0) \\
0, & \text{otherwise}
\end{cases}
\]
The function f is x-continuous, however, fixing $y = 0 = z$ we obtain that $f(x,0,0)$ is not continuous.

Now we shall investigate the necessity of the assumptions in Theorem A, in particular:

(*) - continuity of f at points of $X \times \{y\} \times \{z\}$

(**) - quasi-continuity of f at points of $\{x\} \times Y \times \{z\}$, and

(***) - quasi-continuity of f at points of $\{x\} \times \{y\} \times Z$.

In what follows (Examples 6 and 7) such constructions will be provided.

EXAMPLE 6. The assumption (*) is essential. In fact, let us consider a function $f: [-1,1]^3 \to \mathbb{R}$ given as follows

$$f(x,y,z) = \begin{cases} (x,y,z+1), & \text{if } (x,y,z) \in [0,1] \times [0,1] \times [0,1] \\ (x,y,z-1), & \text{if } (x,y,z) \in [-1,0] \times [-1,0] \times [-1,0] \\ (x,y,z), & \text{otherwise} \end{cases}$$

A standard verification that f has the required property (namely f is not x-continuous at $(0,0,0)$) is left to the reader. Using somewhat more complex, but still elementary techniques we shall show that also (**) (as well as (***)) is essential. In fact, we have

EXAMPLE 7. Consider the function $g:[-1,1]^3 \to \mathbb{R}$ given as follows:

$$g(x,y,z) = \begin{cases} (x,y,z + 1) & \text{if } (x,y,z) \in [-1,1] \times [-1,1] \times [-1,1] \\ (x,y,z), & \text{otherwise} \end{cases}$$

Again, we leave to the interested reader a standard verification that f is not x-continuous at $(0,0,0)$.

3. ONE-PROMISING HYPOTHESIS.

Observe that the definition of x-continuity at (p,q,r) requires the existence of a "small" neighborhood U' of p and "small" nonempty open sets V' and W' such that q and r "cluster" to V' and W' respectively and such that the set $f(U' \times V' \times W')$ is contained in a "small", previously chosen, open set N. This observation prompts us to label this kind of product almost continuity as $1-3$-continuity since we require the existence of only one "small" neighborhood U' (around p) of the three neighborhoods U, V, W.

The term "$1-3$-continuity" has been used already, in a different sense in Breckenridge and Nishiura [9].

So, now let us consider "2-3-continuity".

More precisely, given spaces X, Y, Z and T, we say that $f: X \times Y \times Z \to T$ is 2-3-continuous or more specifically xy-continuous, if for every $(p,q,r) \in X \times Y \times Z$, for every neighborhood $U \times V \times W$ of (p,q,r) and for every neighborhood N of $f(p,q,r)$ there is a neighborhood U' of p, with $U' \subset U$, there is a neighborhood V' of q, with $V' \subset V$ and a nonempty open set W', with $W' \subset W$ such that for all $(x,y,z) \in U' \times V' \times W'$ we have $f(x,y,z) \in N$.

Now, 3-3-continuity can be defined easily; the set W' in definition of 2-3-continuity is assumed to be a neighborhood of r - not just only a nonempty open subset of W.
Clearly, every 3-3-continuous (≡ continuous) function is 2-3-continuous; 2-3-continuous functions are 1-3-continuous and the latter are in turn 0-3-continuous (≡ quasi-continuous).

It now follows from a result of T. Neubrunn [10] that if X, Y, Z are "nice" (e.g. Baire, second countable), T-regular then if f: X × Y × Z → T is separately quasi-continuous then it is (jointly) quasi-continuous.

We can present this fact in the following symbolic equality:

"0 + 0 + 0 = 0",

where the numbers (0 or 1) on the left side of the equality stand for quasi-continuity (0) or continuity (1) of the corresponding sections and the numbers on the right (i = 0, 1, 2 or 3) denote the corresponding i-3-continuity of f as a function of three variables.

Theorem A implies that if X, Y, Z and T are as above and if f: X × Y × Z → T is continuous in x and is quasi-continuous in y and is quasi-continuous in z, then f is 1-3-continuous. Consequently, we get:

"1 + 0 + 0 = 1"

In view of the above considerations it is now natural to state the following:

HYPOTHESIS. Let X, Y and Z be Baire, second countable spaces and let T be regular. If f: X × Y × Z → T is:

1) continuous in x, and
2) continuous in y, and
3) quasi-continuous in z,

Then f is 2-3-continuous;

In other words:

"1 + 1 + 0 = 2"

We shall resolve this Hypothesis in the negative in the forthcoming Example 8.

Now we shall exhibit two examples of i-3-continuous functions which are not (1 + 1)-3-continuous, i = 1,2.

EXAMPLE 8. A 1-3-continuous function which is not 2-3-continuous. Let f: \(\mathbb{R}^3 \to \mathbb{R} \) be given by f\((x_1,x_2,x_3)\) = g\((x_1,x_2)\) where g is an arbitrary separately continuous function which is discontinuous at \((0,0)\).

EXAMPLE 9. A 2-3-continuous function which is not 3-3-continuous (≡ continuous). Take f: \(\mathbb{R}^3 \to \mathbb{R} \) to be f\((x_1,x_2,x_3)\) = h\((x_3)\), where h is any function which is continuous except for 0.

Using the above pattern the reader will easily construct 0-3-continuous function (≡ quasi-continuous) which is not 1-3-continuous.

Apparently, the above constructions can be illustrated with the following very specific formula-ready example.

EXAMPLE 10. Let f: \(\mathbb{R}^3 \to \mathbb{R} \) be a function.
\[f(x_1, x_2, x_3) = g^3_1(x_1, \ldots, x_3), \quad i = 1, 2 \]

where

\[g^3_1(x_1, \ldots, x_1) = \prod_{j=1}^{3} (x_j)^i, \quad \text{if} \quad \sum_{j=1}^{3} (x_j)^i \neq 0 \]

\[0, \quad \text{otherwise} \]

Then \(f \) is \(i \)-3-continuous which is not \((i + 1) \)-3-continuous, \(i = 1, 2 \).

4. FURTHER GENERALIZATION OF \(i \)-3-CONTINUITY.

Having defined 1-3 and 2-3-continuity for \(f: X_1 \times X_2 \times X_3 \to T \), we shall now extend these ideas to a general case.

Namely, let \(n \) be an arbitrary natural number. We say that \(f: X_1 \times X_2 \times \ldots \times X_n \to T \) is \(A-n \)-continuous if for every \((p_1, p_2, \ldots, p_n) \in X_1 \times X_2 \times \ldots \times X_n\) and for every neighborhood \(U_1 \times U_2 \times \ldots \times U_n \) of \((p_1, p_2, \ldots, p_n)\) and for every neighborhood \(N \) of \(f(p_1, p_2, \ldots, p_n) \) there are neighborhoods \(U_{i,1} \times U_{i,2} \times \ldots \times U_{i,k} \) of the first \(k \) out of \(n \) points \(p_1, p_2, \ldots, p_n \) with \(U_{i,s} \subseteq U_i \) and there are \((n-k)\) nonempty open sets \(V_{i,m} \subseteq U_{i,1} \times \ldots \times U_{i,n-k} \times U_{i,m} \) such that for all \((x_1, x_2, \ldots, x_n) \in U_{i,1} \times \ldots \times U_{i,n-k} \times V_{i,m} \) we have \(f(x_1, x_2, \ldots, x_n) \in N \).

An interested reader will easily observe that the formula

\[g^n_k(x_1, \ldots, x_k) = \prod_{i=1}^{k} (x_i)^k, \quad \text{if} \quad \sum_{i=1}^{k} (x_i)^k \neq 0 \]

\[0, \quad \text{otherwise} \]

where \(f: X^n \to R \) describes a \(k \)-n-continuous function \(f \) given by

\[f(x_1, \ldots, x_n) = g^n_k(x_1, \ldots, x_k), \quad k = 1, 2, 3, \ldots, n-1. \]

One can also give analogues of Example 8 and 9 for \(k \)-n-continuity.

Studies of \(C(f) \) in hyperspaces for separately continuous functions and related ones were done also in Bögel [11] and Hahn [12].

5. A PARTIAL SOLUTION TO A PROBLEM OF M. TALAGRAND.

M. Talagrand ([13] Problem 3 p. 160) asked whether if \(X \) is Baire, \(Y \) is compact and \(f: X \times Y \to R \) is any separately continuous function, is there the set \(C(f) \) of points of continuity of \(f \) nonempty.

We shall answer this question in the positive if a compact space \(Y \) is additionally first countable.

In fact, we have shown the following result:

Lemma 12. (Lee and Piotrowski [2], Lemma 2 p. 381). Let \(X \) be Baire, \(Y \) be first countable and \(Z \) be regular. If \(f: X \times Y \to Z \) is a function such that all its \(x \)-sections \(f_x \) are continuous with the exception of a first category set, and all its \(y \)-sections \(f_y \) are quasi-continuous, then \(f \) is quasi-continuous with respect to \(y \).

It follows from the definition that

Remark 12. Every quasi-continuous function with respect to \(y \) is quasi-continuous.

Lemma 13. (Marcus [14]). Let \(X \) be a Baire, \(M \) be metric. If \(f: X \to M \) is quasi-continuous, then \(C(f) \), the set of point of continuity of \(f \) is dense \(G_\delta \) subset of \(X \).
PROPOSITION 14. Let X be Baire, Y be compact first countable and let
f: X \to \mathbb{R} be any separately continuous function. Then C(f) \neq 0.

PROOF. By Lemma 11 and Remark 12 such f is quasi-continuous. Now, since the
Cartesian product of a compact space and a Baire space is Baire, we are done by
Lemma 13.

ACKNOWLEDGEMENT: The second author would like to express his thanks to the Research
Council of Youngstown State University for a grant which enables us to complete this
research.

REFERENCES
3. ARHANGEL'SKII, A. On topological spaces which are complete in the sense of Cech
7. FROLIK, Z. Baire spaces and some generalizations of complete metric spaces,
(1961), 39-44.
9. BRECKENRIDGE, J.C. and NISHIURA, T. Partial continuity, quasi-continuity, and
97-99.
11. BOGEL, K. Uber die stetigkeit und die Schwankung von funktionen zweier reeller
159-164.
Submit your manuscripts at
http://www.hindawi.com