MODIFIED WHYBURN SEMIGROUPS

BETH BOREL REYNOLDS and VICTOR SCHNEIDER
University of Southwestern Louisiana
Lafayette, Louisiana 70504

(Received September 29, 1986 and in revised form November 20, 1986)

ABSTRACT. Let $f: X \times Y$ be a continuous semigroup homomorphism. Conditions are given which will ensure that the semigroup $X \cup Y$ is a topological semigroup, when the modified Whyburn topology is placed on $X \cup Y$.

KEYS WORDS AND PHRASES. Whyburn construction, topological semigroup.

1980 AMS SUBJECT CLASSIFICATION CODE. 54A10, 22A15.

1. INTRODUCTION.

Let (X, m_1) and (Y, m_2) be semigroups and let $f: X \times Y$ be a semigroup homomorphism. An associative multiplication m may be defined on the disjoint union of X and Y as follows: m is m_1 on X, m_2 on Y and $m_2(f(x), y)$ if $x \in X$ and $y \in Y$. If we assume that X and Y are Hausdorff semigroups and that f is continuous, then m is continuous in the disjoint union (or direct sum) topology. Let $(X \cup Y, m)$ denote this Hausdorff semigroup.

Let Z denote the disjoint union of X and Y with Whyburn's unified topology [1]; i.e., V is open in Z iff $V \cap X$ and $V \cap Y$ are open in X and Y, respectively, and for any compact K in $V \cap Y$, $f^{-1}(K) \cap V$ is compact. If X is locally compact, then Z is Hausdorff, and if Y is also locally compact, so is Z. If f is a compact map, then Z and $X \cup Y$ are the same. If X and Y are locally compact, Hausdorff semigroups, (Z, m) is a locally compact Hausdorff semigroup provided m_1 is a compact map [2].

In this paper we consider the modified Whyburn topology which is coarser than the disjoint union topology, but finer than the Whyburn topology and ask what conditions will insure that m will be continuous.

2. MAIN RESULTS.

Let W denote the disjoint union of X and Y with the modified Whyburn topology; V is open in W iff $V \cap X$ and $V \cap Y$ are open in X and Y, respectively, and $f^{-1}(y) \cap V$ is compact for every y in $V \cap Y$. The following notions and facts are due to Stallings [3]. A subset A of X is fiber compact relative to f: $X \times Y$ iff A is closed in X and $A \cap f^{-1}(x)$ is compact for every $y \in Y$, and X is locally fiber compact iff every point in X has a neighborhood with a fiber compact closure. Fiber compact subsets of X are closed in W and W is Hausdorff if X is locally fiber compact. If Y is first countable, then Z and W
are the same iff \(f \) is closed.

The proof given in [2] that \(m \) is a continuous operation on \(Z \) did not use the assumption that \(m^{-1}_1(K) \) is compact for every compact \(K \) in \(X \), but used an equivalent condition instead. The appropriate generalization of that condition for \(W \) is:

CONDITION 1. For every fiber compact \(K_1 \) in \(X \), there is a fiber compact \(K_2 \) in \(X \) such that for all \(x, y \in X \), if \(m_1(x,y) \in K_1 \), then \(x \in K_2 \) and \(y \in K_2 \).

This condition is equivalent to: \(p_i^{-1}(m^{-1}_1(K)) \), \(i = 1,2 \), are fiber compact for each fiber compact \(K \) in \(X \), where \(p_1 \) and \(p_2 \) are the projections on \(X \times X \).

THEOREM 1. If \(X \) is locally fiber compact, \(Y \) is regular and \(m_1 \) satisfies Condition 1, then \(m \) is continuous and hence \(W \) is a Hausdorff semigroup.

PROOF. The argument is similar to the one given for \(Z \). We will show continuity at a point \((x,y)\) where \(x \in X \) and \(y \in Y \). Let \(w = m(x,y) = m_2(f(x),y) \). Let \(V \) be an open set in \(W \) containing \(w \). Since \(Y \) is regular, there is a \(Y \)-open set \(U \) containing \(y \) such that \(\overline{U} \subset Y \cap V \). Since \(m_2 \) is continuous, there are \(Y \)-open neighborhoods \(U_1 \) and \(U_2 \) of \(f(x) \) and \(y \), respectively, such that \(m_2(U_1 \times U_2) \subset U \cap V \). Then \(V_1 = f^{-1}(U_1) \cup U_2 \), \(i = 1,2 \), are \(W \)-open neighborhoods of \(x \) and \(y \), respectively. Since \(f^{-1}(\overline{U}) \cap V \) is fiber compact, Condition 1 guarantees the existence of a fiber compact \(K \) in \(X \) such that if \(m_1(x,y) \) are in \(f^{-1}(\overline{U}) \) \(- V \), then \(x \) and \(y \) are in \(K \). Since \(K \) is fiber compact, \(K \) is closed in \(W \) and so \(K \times K \) is closed in \(W \times W \). Hence \(V_1 \times V_2 - K \times K \) is an open set containing \((x,y)\) and a calculation shows that \(m \) maps \(V_1 \times V_2 - K \times K \) into \(V \).

Let \(X = (0,1) \times [0,1] \), \(Y = [0,1] \) and \(f: X \rightarrow Y \) by \(f(x,y) = y \). If \(X \) and \(Y \) have the usual multiplications, then \(Z \) is \([0,1] \times [0,1]\) with the usual multiplication. However, the multiplication is not continuous on \(W \) since \(\{(\frac{1}{n},1)\} \rightarrow 1 \) and \(\{(1,1-\frac{1}{n})\} \rightarrow (1,1) \) in \(W \) but \(\{(\frac{1}{n},1-\frac{1}{n})\} \) does not converge since it is a fiber compact set in \(X \) and hence closed in \(W \).

If the multiplication on \(X \) is changed to be the usual multiplication in the first factor and the zero multiplication in the second and if \(Y \) is given the zero multiplication, then the conditions of Theorem 1 are satisfied. Since \(f \) is not a closed map, \(W \) is not the same as \(Z \). Hence \(W \) is a Hausdorff semigroup topologically different from \([0,1] \times [0,1]\).

These examples illustrate how difficult it is to have \(m \) continuous on \(W \). In fact, we have:

THEOREM 2. Suppose \(X \) is connected and for each \(y \) in \(Y \), \(f^{-1}(y) \) is not compact. If \((W,m)\) is a first countable, Hausdorff semigroup, then \(Y \) has the zero multiplication.

PROOF. Let \(t, y \in Y \) and let \(z = m_2(t,y) \). Let \(A = \{x \in X \mid m(x,y) = z\} \). Since \(f^{-1}(t) \subset A \), \(A \neq \emptyset \). Also \(A \) is closed in \(X \) since \(m(A,y) = z \) implies that \(m(A,y) = z \). Since \(f^{-1}(y) \) is not compact, \(y \) is a limit point of \(f^{-1}(y) \) in \(W \) and so there is a sequence \(\{y_i\} \) in \(f^{-1}(y) \) converging to \(y \) in \(W \). Let \(x \in A \) and \(\{V_i\} \) be a countable neighborhood basis at \(x \). If we assume that no \(V_i \) is contained in \(A \), we can find a sequence \(\{x_i\} \) which converges to \(x \) such that
m(x_i,y) \neq z$. Hence $m_1(x_i,y_i)$ is not in $f^{-1}(z)$ for all i, but $\{m_1(x_i,y_i)\}$ converges to z. Thus the set $B = \{m_1(x_i,y_i)\}$ is closed in X. For any $w \in Y$, $f^{-1}(w) \cap B$ is finite because otherwise B will have a convergent subsequence in the compact set $\{w\} \cup f^{-1}(w)$. This means that B is fiber compact and $W - B$ is a neighborhood of z which contradicts the fact that $\{m_1(x_i,y_i)\}$ converges to z. Thus A is open and must equal X since X is connected. All of this yields $m_2(Y,y) = z$. Let $t',y' \in Y$ and let $z' = m_2(t',y')$. The argument above will give that $m_2(t',Y) = z'$. Hence $z = z'$ and Y has the zero multiplication.

REFERENCES

Submit your manuscripts at
http://www.hindawi.com