A NOTE ON THE VERTEX-SWITCHING RECONSTRUCTION

I. KRASIKOV
School of Mathematical Sciences
Tel-Aviv University
Tel-Aviv
Israel

(Received October 7, 1987 and in revised form November 15, 1987)

ABSTRACT. Bounds on the maximum and minimum degree of a graph establishing its
reconstructibility from the vertex switching are given. It is also shown that any
disconnected graph with at least five vertices is reconstructible.

KEY WORDS AND PHRASES. Vertex-Switching, Reconstruction.
1980 AMS SUBJECT CLASSIFICATION CODE. 05C06.

1. INTRODUCTION.

A switching G_v of a graph G at vertex v is a graph obtained from G by deleting
all edges incident to v and inserting all possible edges to v which are not in G.
Since switching is a commutative operation, i.e., $(G_v)_u = (G_u)_v$, the definition can
be naturally extended to arbitrary subsets of the vertex set $V(G)$. Thus, G_{A} is defined
for all $A \subseteq V(G)$.

The Vertex-Switching Reconstruction Problem, proposed by Stanley [1], asks: Is
G uniquely determined up to isomorphism by the set (deck D), $\{G_v\}_v \in V(G)$?
If the answer is "yes" then G is called reconstructible.

It was shown in [1] that any graph G with $n = |V(G)| \equiv 0(\text{mod } 4)$ is reconstructible.
It seems that a little is known about the case $n = 0(\text{mod } 4)$. However, Stanley
pointed out [1], that the degree sequence of a graph, and consequently, the number of
edges easily reconstructible, provided $n \neq 4$. Bounds on the number of edges in a
graph, $e(G)$, establishing its reconstructibility was given [2]. Namely:

$$e(G) \leq \left[\frac{n(n-2)}{4}, \frac{n^2}{4}\right], \quad n \neq 4.$$

As might be expected, in virtue of the last result, G is reconstructible if it
has a vertex of degree not close to $n/2$ or if G is disconnected. Here we will prove
the last claim (Theorem 2) and show that for sufficiently large n a graph is recon-
structible if $\max (\Delta, n - \delta) > 0.9n$, where Δ and δ are the maximum and the minimum
degree of G respectively. Actually, we prove a little more, namely:
2. MAIN RESULTS.

THEOREM 1. If \[\min \left(n \binom{n-1}{\Delta}, n \binom{n-1}{\delta} \right) < 2^{n/2-3} \], then \(G \) is reconstructible.

PROOF. In virtue of the quoted result of Stanley, we may assume \(n \equiv 0 \pmod{4} \). We will consider a graph \(G \) as a spanning subgraph of a fixed copy of the complete graph \(K_n \). The switching equivalence class \(G^* \) of \(G \) is the set of all \(H \subset K_n \) isomorphic to \(G \) such that \(H = G_A \) for some switching \(A \subset V(G) \).

For each subgraph \(g \subset G \), let \(\mu(G^* \ni g) \) be the number of those elements of \(G^* \) which contain a fixed copy of \(g \).

First we show that \(G \) is reconstructible if

\[\frac{\mu(G^* \ni g)}{s(g \rightarrow G)} \leq \frac{1}{2} \]

where \(s(H \rightarrow F) \) is the number of the subgraphs of \(F \) isomorphic to \(H \).

Observe that

\[|G|^s(g \rightarrow G) \leq \mu(G^* \ni g) s(g \rightarrow K_n) \]

On the other hand, consider the set \(S = \{ A : G_A \in G^* \} \).

Observe that \(|S| = 2|G^*| \) since \(G_A \) and \(G_{-A} \) are identical. It is known that for a nonreconstructible graph \(|S| \geq \left(\begin{array}{c} \frac{n}{2} \end{array} \right) \) ([2], Corollary 2.4). Thus, if \(G \) is not reconstructible then

\[2|G^*| \geq \sum \left(\begin{array}{c} \frac{n}{2} \end{array} \right) \]

Comparing (2.2) and (2.3), we get that (2.1) is enough for the reconstructibility of \(G \).

Now we will prove that disconnected graphs are reconstructible. First we need the following simple lemma:

LEMMA 1. Suppose that nonisomorphic graphs \(G \) and \(H \) have the same deck. Then for any \(v \in V(G) \) there is \(u \in V(G) \), \(v \neq u \), such that \(G_vu \neq H \).

PROOF. Since the decks of \(G \) and \(H \) are equal then there is a bijection \(\phi : V(G) \rightarrow V(H) \) such that \(G_v \neq H_{\phi(v)} \). Let \(h_v : H_{\phi(v)} \rightarrow G_v \) be an isomorphism. Choosing \(u = h(\phi(v)) \) we obtain \(G_{vu} \neq H \). Moreover, since \(G_{vv} = G \), then \(v \neq \phi(v) \).
COROLLARY 1. Let \(n \neq 4 \). If \(G_{vu} \) and \(G, _ \neq u \), have the same deck then
\[\deg (v) + \deg (u) = n \text{ or } n - 2, \]
depending on whether \(v \) and \(u \) are adjacent in \(G \) or are not.

PROOF. Let \(e(v,u) \) be the number of edges between \(v \) and \(u \). Since \(e(G) = e(H) \) then
\[\deg (v) + \deg (u) = 2e(v,u) = \frac{1}{2} \cdot 2(n - 2) = n - 2. \]

COROLLARY 2. If \(G \) is not reconstructible and \(n \neq 4 \) then \(n - 2 \leq \delta + \Delta \leq n \).

PROOF. This easily follows from Lemma 1 and Corollary 1. We omit the details.

THEOREM 2. Any disconnected graph is reconstructible, provided \(n \neq 4 \).

PROOF. Assume the contrary. Then there are two nonisomorphic graphs \(G \) and \(H \) with the same deck, \(n \neq 4 \), and, say, \(G \) is disconnected. Denote by \(C \) a minimal connected component of \(G \). First we show that \(G \) has exactly two connected components and \(C \neq K_{6+1} \).

Let \(v \) be a vertex of the minimal degree in \(C \), and let \(u \) be such a vertex that
\[G_{vu} \neq H. \]
We claim that either \(u \neq v \) or \(G \) is regular of degree \(n - 2 \). Indeed,
\[C > \max (\deg (v) + 1, \deg (u) + 1) > n/2, \]
which contradicts the minimality of \(C \). Furthermore, if \(G \) is regular then again \(v \) and \(u \) are in different components since, otherwise, the degree sequences of \(G \) and \(G_{vu} \) are different. Now it follows by Corollary 1, \(\deg(v) + \deg (u) = n - 2 \). Therefore, \(G \) has exactly two components, \(C \) is regular, and \(\Delta \geq n/2. \)

Let us show that \(C \) is just \(K_{6+1} \). Since all vertices of degree \(\Delta \) are in \(C \), we have
\[\deg (v) + 1 \leq |C| \leq n - \Delta - 1. \]

Hence, applying Corollary 2, we get
\[n - 2 \leq \delta + \Delta \leq \deg (v) + \Delta \leq n - 2. \]

Thus, \(\deg (v) = \delta, \deg (u) = \Delta, \) and \(C \neq K_{6+1} \).

Finally, \(G_{vu} \neq G \) since \(\deg (v) = |C| - 1, u \in _ \) and \(\deg (u) = \Delta = |_| - 1, \)
which is a contradiction. This completes the proof.

REFERENCES
Submit your manuscripts at
http://www.hindawi.com