BOUND SETS IN $\mathcal{L}(E,F)$

THOMAS E. GILSDORF

Department of Pure and Applied Mathematics
Washington State University
Pullman, Washington 99164

(Received October 27, 1987 and in revised form June 7, 1988)

Abstract: Let E and F be Hausdorff locally convex spaces, and let $\mathcal{L}(E,F)$ denote the space of continuous linear maps from E to F. Suppose that for every subspace $N \subset E$ and an absolutely convex set $A \subset E$ which is bounded, closed, and absorbing in N, there is a barrel $D \subset E$ such that $A \subset D \cap N$. Then it is shown that the families of weakly and strongly bounded subsets of $\mathcal{L}(E,F)$ are identical if and only if E is locally barreled.

Key Words and Phrases: Locally barreled space, S-topology, bounded set for S-topology.

1980 Mathematics Subject Classification Code (1985 Revision): Primary 46E10; Secondary 46A05.

I. INTRODUCTION.

Throughout this paper E and F will denote Hausdorff locally convex spaces, and $\mathcal{L}(E,F)$ the space of continuous linear maps from E to F. An absolutely convex set A in E will be called a disk. If A is any subset of E, its linear hull will be denoted by E_A. For a disk B in E, its linear hull is given by $E_B = \cup \{nB : n \geq 1\}$. Equipped with the topology generated by the Minkowski functional of B, E_B is a semi-normed space. This leads to the definition which follows.

DEFINITION 1: Let $B \subset E$ be a disk. If E_B is a barreled normed space, then B is called a barreled disk; E is locally barreled if each bounded set in E is contained in a closed, bounded barreled disk.
II. A UNIFORM BOUNDEDNESS THEOREM

It is proven in [1] that in a locally convex space E the families of $\sigma(E', E)$-bounded and $\beta(E', E)$-bounded sets are the same if E is locally barreled. This is proven for the general case $L(E, F)$ in our first result below. Conversely, in section III. we will examine the local barreledness of E in terms of subsets of $L(E, F)$ which are bounded for any S-topology, where S is a family of bounded sets which covers E.

THEOREM 2. If E is locally barreled then the families of bounded sets in $L(E, F)$ are the same for all S-topologies, where S is a family of bounded sets in E which covers E.

PROOF: Assume E to be locally barreled. Let V be a closed, absolutely convex 0-neighborhood in F. Let $H \subset L(E, F)$ be pointwise bounded. Let

$$D = \bigcap \{ u^{-1}(V) : u \in H \}.$$

Then D is a closed disk in E. Since H is pointwise bounded, we have:

$$x \in E \Rightarrow \bigcup \{ u(x) : u \in H \} \subset \alpha V,$$

for some $\alpha > 0$. By taking inverse images, it follows that D is absorbing in E; hence, D is a barrel in E. In 8.5, Chapter II of [2] it is proven that D absorbs all bounded Banach disks. A careful reading of that proof reveals that the only property of Banach spaces which is used is the property of being barreled. Hence, any barrel in E absorbs all closed, bounded barreled disks in E, as well. Moreover, if A is any bounded subset of E, then A is contained in some closed, bounded barreled disk B. Therefore, D absorbs A and 3.3, Chapter III of [2] now asserts that H is bounded for the topology of bounded convergence on $L(E, F)$.

III. LOCALLY BARRELED SPACES AND BOUNDED SETS IN $L(E, F)$.

Let (P) denote the following property of a locally convex space E:

(P) For each absolutely convex, closed, bounded set $A \subset E$ there exists a barrel $D \subset E$ such that $A = D \cap E_A$.

THEOREM 3. Let E and F be a Hausdorff locally convex spaces. Assume E satisfies property (P). Then the following are equivalent:
(a) The families of bounded subsets of \(\mathcal{L}(E,F) \) are identical for all \(S \)-topologies on \(\mathcal{L}(E,F) \),
where \(S \) is a family of bounded subsets of \(E \) which covers \(E \).

(b) \(E \) is locally barreled.

PROOF. In view of Theorem 2, we need only prove \((a) \Rightarrow (b) \).

If \(E \) is not locally barreled, then there exists an absolutely convex, closed, bounded set \(B \subset E \) such that \(E_B \) is not barreled. We will first show that every set \(M \) which is closed and bounded in \(E_B \) is also closed in \(E \). Denote by \(M_0 \) the closure of \(M \) in \(E \). Since \(M \) is bounded in \(E_B \), \(M \subset \lambda B \), for some \(\lambda > 0 \). \(\lambda B \) is closed in \(E \). Hence \(M_0 \subset \lambda B \subset E_B \). Take \(x_0 \) in \(M_0 \) and a net \(\eta \subset M \) such that \(\eta \to x_0 \) in the topology of \(E \). The identity \(\text{id}: E_B \to E \) is continuous, and \(\{k^{-1}B : k \in \mathbb{N}\} \) is a basis for the neighborhoods of zero in \(E_B \) consisting of sets closed in \(E \). Therefore, by 3.2.4 of [3], \(\eta \to x_0 \) in the topology of \(E_B \). Finally, \(M \) is closed in \(E_B \). Hence \(x_0 \in M \), so \(M \) is closed in \(E \).

Now choose a barrel \(A \) in \(E_B \) which is not a 0-neighborhood in \(E_B \). Then we may choose a sequence \(\{x_n\} \subset E_B \setminus A \) such that \(x_n \to 0 \) in the topology of \(E_B \). The normability of \(E_B \) implies that \(\{x_n\} \) is locally convergent; thus we may choose a sequence \(\{a_n\} \) of positive real numbers such that \(a_n \uparrow \infty \) and \(a_n x_n \to 0 \) in the normed space \(E_B \). Since the normed topology of \(E_B \) is finer than the topology on \(E_B \) induced by \(E \), the sequence \(\{a_n x_n\} \) also converges to 0 with respect to the topology of \(E \). This means

\[
S = \{a_n x_n : n \in \mathbb{N}\}
\]

is bounded in \(E \).

Since \(A \cap B \) is absolutely convex, bounded, and closed in \(E_B \), it is also closed and bounded in \(E \). By (P), there is a barrel \(D \subset E \) such that

\[
A \cap B = D \cap E_{A \cap B} = D \cap E_B.
\]

Now, \(x_n \not\in D \) for each \(n \), and we may therefore choose \(f_n \in E' \) such that \(|f_n(x)| \leq 1 \) for any \(x \in D \) while \(f_n(x_n) = 1 \), where each \(f_n \) is real valued.

Let \(y_0 \in F \setminus \{0\} \), and define \(g : \mathbb{R} \to F \) by

\[
g(z) = zy_0,
\]

for each \(z \in \mathbb{R} \). \(g \) is a linear map taking bounded sets in \(\mathbb{R} \) to bounded sets in \(F \); therefore, \(g \) is continuous.
Now, for each \(n \in \mathbb{N} \), define \(h_n : E \to F \) by
\[
h_n = g \circ f_n.
\]

As the composition of two linear, continuous maps, each \(h_n \in \mathcal{L}(E, F) \).

Put
\[
H = \{ h_n : n \in \mathbb{N} \}.
\]

First, notice that for each \(x \in D \), \(|f_n(x)| \leq 1 \), hence \(h_n(x) \in C \), where \(C \) is the line segment from \(-y_0\) to \(y_0\) in \(F \). Obviously, \(C \) is bounded in \(F \); consequently,
\[
\bigcup \{ h_n(x) : n \in \mathbb{N} \}
\]
is bounded in \(F \) for each \(x \in D \). Since \(D \) is absorbing in \(E \),
\[
\bigcup \{ h_n(x) : n \in \mathbb{N} \}
\]
is bounded in \(F \) for each \(x \in E \) as well; this makes \(H \) a pointwise bounded set.

Finally,
\[
\bigcup \{ h_n(x) : x \in S, n \in \mathbb{N} \} = \bigcup \{ h_n(a_n x_n) : n \in \mathbb{N} \} = \bigcup \{ a_n g(1) : n \in \mathbb{N} \} = \bigcup \{ a_n \{ y_0 \} : n \in \mathbb{N} \}.
\]

Letting \(\alpha_n = a_n^{-1} \), then
\[
\lim_{n \to \infty} \alpha_n = 0,
\]
while
\[
\lim_{n \to \infty} \alpha_n(a_n \{ y_0 \}) = y_0 \neq 0.
\]

This means \(H(S) \) is not bounded in \(F \); thus \(H \) is not bounded for the topology of uniform convergence on bounded sets. \(\square \)

References

1 KUČERA, J., GILSDORF, T., A Necessary and Sufficient Condition for Weakly Bounded Sets to be Strongly Bounded, to appear.

Submit your manuscripts at http://www.hindawi.com