HOW MANY NUMBERS SATISFY THE 3X + 1 CONJECTURE?

I. KRASIKOV

School of Mathematical Sciences
Tel-Aviv University
Israel

(Received March 25, 1988 and in revised form December 12, 1988)

ABSTRACT. Let \(\theta(x) \) be the number of numbers not exceeding \(x \) satisfy the 3X + 1 conjecture. We obtain a system of difference inequalities on functions closely related to \(\theta \). Solving this system in the simplest case, we establish \(\theta(x) > cx^3 / 7 \). This improves a result of Crandall [1].

KEY WORDS AND PHRASES. 3X + 1 conjecture, residue class, difference inequality.

1980 AMS SUBJECT CLASSIFICATION CODES. 11A, 11B.

1. INTRODUCTION.

The famous conjecture of Collatz-Kakutani, also known as the Syracuse or the "3X + 1" problem, claims that the sequence

\[
\alpha_{n+1} = T(\alpha_n) = \begin{cases}
\frac{3\alpha_n + 1}{2}, & \alpha_n \equiv 1 \pmod{2} \\
\frac{\alpha_n}{2}, & \alpha_n \equiv 0 \pmod{2}
\end{cases}
\] (1.1)

converges to the cycle (1,2) for any \(\alpha_0 \in \mathbb{Z}^+ \).

The following well-known heuristic argument serves as an evidence for its validity. Consider \(T \) as though it were a random walk. It is natural to suppose that odd and even numbers appear independently, with probability 1/2 at each jump.
Then $T(n)(a_0)$ should converge since the mathematical expectation

of $\frac{T(a)}{a}$ is about $\left(\frac{3}{2} \cdot \frac{1}{2}\right)^{1/2} < 1$.

Although this conjecture seems to be intractable at present, some supporting
results have been obtained. An interesting review on this problem can be found in
[2]. In particular, Crandall [1] proved that the conjecture is true for many values
of a_0. Namely, set $\mathcal{I}(x) = \left\{ u : T^{(k)}(u) = 1 \text{ for some } k > 0 \text{ and } u < x \right\}$.

Thus, $\mathcal{I}(x)$ is just the number of numbers not exceeding x satisfying the conjecture.

Then Crandall's result is $\mathcal{I}(x) > cx$, for appropriate constants $c, r > 0$. However,
his proof gives a very poor value for r, about 0.05.

Here we derive a system of difference inequalities on functions closely related
to \mathcal{I} (Lemma 4). Solving this system in the simplest case, we
establish $\mathcal{I}(x) > cx^{3/7}$. Actually our proof gives a little more, namely:

\[
\text{given any } v \equiv 1 \text{ or } 2 \pmod{3} \text{ that is not in a cycle, for all } x > 1
\]

\[
\left\{ n < v x : T^{(k)}(n) = v \text{ for some } k > 1 \right\} \geq c_0 x^{3/7}
\]

where c_0 is a positive constant independent of v.

In some sense the proof may be regarded as an attempt to formalize the above
mentioned heuristic argument.

2. RESULTS.

Consider the infinite directed graph G on the vertex set $V = \mathbb{Z}^+$ and the edge
set $E = \{(T(v), v)\}$, whose edges are oriented from $T(v)$ to v. Denote by $G(v,x)$ an
induced subgraph of G whose vertex set consists of all integers n such that
some $T^k(n) = v$ and $T^i(n) < x$ for $0 < i < k$. That is, it consists of all integers n
whose trajectory hits v and remains below x the entire time. In particular $G(v,x)$ is
the empty set if $x < v$. We also put $G(v) = G(v,\infty)$. Observe that $G(v)$ has at most
one cycle since the in degree of each vertex, but may be v, is one. Moreover, if v
do not lie in a cycle of G then $G(v)$ is a tree.

Here we prefer to deal with U, the mapping inverse to T, namely:

\[
U(a) = \begin{cases}
2a, & a \equiv 0, 1 \pmod{3} \\
2a - \frac{1}{3}, & a \equiv 2 \pmod{3}
\end{cases} \quad (2.1)
\]

Since only numbers $a \equiv 2 \pmod{3}$ have two inverses under T, we wish to analyze
iterates under $U = T^{-1}$ restricted to integers $\equiv 2 \pmod{3}$. To do this we must
consider values of $a \pmod{9}$.
Let S_n be a complete system of residue classes modulo 3^n. We split S_n as follows:

$$S_n = \bigcup_{i=0}^{2} R_i^n, \text{ where } \alpha \in R_i^n \iff \alpha \equiv i \pmod{3}.$$

Furthermore, put

$$R_2^2 = Q_5^n \cup Q_8^n, \text{ where } \alpha \in Q_i^n \iff \alpha \equiv i \pmod{9}.$$

Obviously, $U: R_n^0 \rightarrow R_n^0$ and $U: R_n^1 \rightarrow R_n^2$. The action of U on R_n^2 can be split into the four following operators:

$$U_1: R_n^2 + R_n^2, U_1(\alpha) = 4\alpha$$

$$U_2: Q_5^n + R_n^{0,1}, U_2(\alpha) = \frac{2\alpha - 1}{3}$$

$$U_3: Q_8^n + R_n^{2,1}, U_3(\alpha) = \frac{4\alpha - 2}{3}$$

$$U_4: Q_8^n + R_n^{8,1}, U_4(\alpha) = \frac{2\alpha - 1}{3}$$

The following lemma is an easy exercise in elementary number theory:

LEMMA 1.

(i) U_1 is a bijection $R_n^2 + R_n^2$. Moreover, if $\alpha \in R_n^2$ then $\ell = 3^{n-1}$ is the smallest positive integer such that $U_1(\ell)(\alpha) = \alpha$.

(ii) U_3 is a bijection $Q_8^n + R_n^{2,1}$.

(iii) U_4 is a bijection $Q_8^n + R_n^{8,1}$.

The action of U on R_n^0 and R_n^1 is much simpler. Namely, $U: R_n^0 \rightarrow R_n^0$ and $U: R_n^1 \rightarrow R_n^2$ are bijections. Moreover, since $\alpha \in R_n^0$ implies $U(\alpha) = 2\alpha \in R_n^0$ we get

LEMMA 2. If $\nu \in R_n^0$ then $G(\nu)$ is a chain.

Now we define the functions we deal with in this paper.

Let $v \equiv m \pmod{3^n}$. We set $f(v,x) = f_n^m(v,x) = \lvert G(v,x) \rvert$. (The reason for using the redundant notation $f_n^m(v,x)$ instead of $f(v,x)$ is to simplify the statement of the difference inequalities that follow.)

Observe that for $v \leq x$

$$f_n^m(v,x) = 1 + \lfloor \log_2 \frac{x}{v} \rfloor, \text{ m } \in R_n^0, \quad (2.2)$$

$$f_n^m(v,x) = 1 + f_n^{2m}(2v,x), \text{ m } \in R_n^1. \quad (2.3)$$
Furthermore, let \(W = \{ w \} \) be the set of those vertices of \(G \) which do not belong to a cycle. For instance, \(u^k(4) \in W \) for all \(K > 0 \). Then \(G(w) \) is a tree and we set

\[
\phi_n^m(y) = \inf \{ \phi^m_n(v, 2^y v) : v \in W, v \equiv m \pmod{3^n} \}.
\]

Note that for any \(m \equiv 2 \pmod{3} \) and \(n \), the set \(\{ v : v \in G(u), v \equiv m \pmod{3^n} \} \neq \emptyset \) because \(2^k v \) is in this set and 2 is a primitive root \(\pmod{3^n} \) for all \(n \).

Lemma 3. \(\phi_n^m(y) \) is nondecreasing function of \(y \).

Proof. Obviously, \(\phi_n^m(v, x) \) is a nondecreasing function of \(x \).

Hence, \(\phi_n^m(y) = \inf \phi_n^m(v, 2^y v) \) is nondecreasing function of \(y \).

The following lemma gives important recurrent inequalities on \(\phi_n^m(y) \).

Lemma 4. For \(y > 0 \),

\[
\phi_n^m(y) > \phi_n^m(y - 2) + \phi_n^{m+2}(y + \alpha - 2), \quad m \in \mathbb{Q}^n_2
\]

\[
\phi_n^m(y) > \phi_n^m(y - 2) + \phi_n^{m+2}(y + \alpha - 1), \quad m \in \mathbb{Q}^n_8
\]

where \(\alpha = \log_2 3 = 1.585 \) and

\[
\phi_n^{m+3n-1}(y) = \min (\phi_n^m(y), \phi_n^{m+2n-1}(y), \phi_n^{m+2n-1}(y)).
\]

Proof. (2.5) follows immediately from the definition of \(\phi_n^m(y) \). Let us demonstrate (2.4). If \(v \equiv m \pmod{3^n} \), \(m \in \mathbb{Q}_n^8 \) then, by (2.1), if \(v < x \),

\[
|G(v, x)| > |G(4v, x)| + G\left(\frac{2v - 1}{3}, x\right).
\]

If \(\frac{2v - 1}{3} \equiv 0 \pmod{3} \) then \(G\left(\frac{2v - 1}{3}, x\right) \) is a chain by lemma 2. Thus, by (2.2), if \(v < x \),

\[
f_n^m(v, x) = f_n^m(4v, x) + 1 + \left[\log_2 \frac{3x}{2v - 1} \right].
\]

Hence, \(\phi_n^m(y) > \phi_n^m(y - 2) + [y + \alpha] \).

If \(m \in \mathbb{Q}_n^8 \) then \(G(v, x) \) is a forest. Hence,

\[
|G(v, x)| = |G(4v, x)| + G\left(\frac{2v - 1}{3}, x\right).
\]
By \(\frac{2v - 1}{3} < \frac{2v}{3} \) and by Lemma 3 we get, if \(y > 0 \) and \(x = 2^v y \), then

\[
\psi_n^v(y) = \inf \psi_n^m(v, x) = \inf \left(\frac{2^v - 1}{3} \psi_{n-1}^m \left(\frac{2^v - 1}{3}, x \right) \right) >
\]

\[
> \inf \psi_n^m(4^v, x) + \inf \left(\frac{2^v - 1}{3} \psi_{n-1}^m \left(\frac{2^v - 1}{3}, x \right) \right) > \phi_n^m(y - 2) + \phi_n^m(y + a - 1).
\]

The case \(m \in \mathbb{Q}_n \) may be considered similarly to the case \(m \in \mathbb{Q}_n^8 \). We omit the details.

Theorem 1. \(\theta(x) > c_2x^{\frac{3}{7}} \).

Proof. For \(n = 2 \) the system (2.4) becomes for \(y > 0 \),

\[
\phi_2^2(y) > \phi_2^8(y - 2) + \phi_1^5(y + a - 2),
\]

\[
\phi_2^8(y) > \phi_2^5(y - 2) + \phi_1^5(y + a - 1),
\]

\[
\phi_2^5(y) > \phi_2^5(y - 2),
\]

where \(\phi_1^5(y) = \min (\phi_2^2(y), \phi_2^8(y), \phi_2^5(y)) \). Observe that \(\phi_2^8(y) > \phi_1^5(y) \) for \(y > 2 \) by

\[
\phi_2^8(y) > \phi_2^5(y - 2) + \phi_1^5(y + a - 1) > \phi_1^5(y),
\]

since \(\phi_1^5(y + a - 1) > \phi_1^5(y) \) and \(\phi_2^5(y - 2) > 0 \) if \(y > 2 \). Hence,

\[
\phi_1^5(y) = \min (\phi_2^2(y), \phi_2^8(y)) > \min (\phi_2^2(y), \phi_2^2(y - 2)) = \phi_2^2(y - 2).
\]

This yields if \(y > 6 \),

\[
\phi_2^2(y) > \phi_2^5(y - 4) + \phi_1^5(y + a - 1) + \phi_1^5(y + a - 2)
\]

\[
> \phi_2^5(y - 6) + \phi_1^5(y + a - 1) + \phi_1^5(y + a - 2)
\]

\[
> \phi_2^5(y - 6) + \phi_2^5(y + a - 5) + \phi_2^5(y + a - 4).
\]

The initial conditions \(\phi_2^2(0) = 1 \) imply \(\psi_2^2(y) > 1 \) for \(y > 6 \), whence one proves by induction on \(n \), that for \(n < y < n + 1 \), one has \(\psi_2^2(y) > c_1 \lambda^y \), where \(\lambda = 1.3534 \) is the largest root of \(1 - \lambda^{-6} + \lambda^{-5} + \lambda^{-4} \).

Finally, we obtain \(\theta(x) > c_2x^{\frac{\log_2 \lambda}{\frac{3}{7}}} = c_2x^{\frac{3}{7}} \), where \(\log_2 \lambda = 0.436 \).

Remark. Although system (2.4) seems to be very complicated and we were unable to
solve it for \(n > 3 \), averaging it over all residue classes modulo \(3^n-1 \) looks much more attractive. Namely, define

\[
F_n(y) = 3^{-n+1} \sum_{m \in \mathbb{Z}/3^n} \phi^m_n(y).
\]

Using lemmas 1 and 4 we get

\[
3^{n-1} F_n(y) = \sum_{m \in \mathbb{Z}/n} \phi^m_n(y-2) + \sum_{m \in \mathbb{Z}/n} \phi^m_n(y+\alpha-2) + \sum_{m \in \mathbb{Z}/n} \phi^m_{n-1}(y+\alpha-1) = 3^{n-1} F_n(y-2) + 3^{n-2} F_{n-1}(y + \alpha - 2) + 3^{n-2} F_{n-1}(y + \alpha - 1).
\]

Thus,

\[
F_n(y) > F_n(y-2) + \frac{1}{3} F_{n-1}(y + \alpha - 2) + \frac{1}{3} F_{n-1}(y + \alpha - 1).
\]

Observe that the associated limit equation \(1 = \lambda^{-2} + \frac{1}{3} (\lambda^{\alpha-2} + \lambda^{\alpha-1}) \) has \(\lambda = 2 \) as the smallest positive root. Therefore, one might expect that the solution of the difference inequalities gives \(\theta(x) > c_n x^n \), where \(r_n + 1 \) when \(n \) tends to infinity.

REFERENCES

Submit your manuscripts at http://www.hindawi.com