ABSTRACT. The Lyapunov mapping on $n \times n$ matrices over \mathbb{C} is defined by $L_A(X) = AX + XA^*$; a matrix is stable if all its characteristic values have negative real parts; and the inertia of a matrix X is the ordered triple $\text{In}(X) = (\pi, \nu, \delta)$ where π is the number of eigenvalues of X whose real parts are positive, ν the number whose real parts are negative, and δ the number whose real parts are 0. It is proven that for any normal, stable matrix A and any hermitian matrix H, if $\text{In}(H) = (\pi, \nu, \delta)$ then $\text{In}(L_A(H)) = (\nu, \pi, \delta)$. Further, if stable matrix A has only simple elementary divisors, then the image under L_A of a positive-definite hermitian matrix is negative-definite hermitian, and the image of a negative-definite hermitian matrix is positive-definite hermitian.

KEY WORDS AND PHRASES. Lyapunov, stable matrix, matrix inertia, positive-definite matrix

1980 AMS SUBJECT CLASSIFICATION CODES. 15A18, 15A42

For many years stable matrices have interested applied mathematicians because, for a system of linear homogeneous differential equations whose coefficients are constant, a stable matrix of coefficients is a necessary and sufficient condition that the solution be asymptotically stable. Recently, algebraists too have become interested in stable matrices.

Definition: A square matrix is stable if all its characteristic values have negative real parts.

(In this article, the entries of all matrices are complex numbers unless stated otherwise.)

A classical test for stability of matrices is Lyapunov's theorem, whose statement is facilitated by some notation:

- S = set of all $n \times n$ stable matrices
- H = set of all $n \times n$ hermitian matrices
- iH = set of all $n \times n$ skew-hermitian matrices
- G = set of all $n \times n$ positive-definite hermitian matrices
- N = set of all $n \times n$ negative-definite hermitian matrices
- $L_A(X) = AX + XA^*$, where A and X are $n \times n$ matrices and A^* is the conjugate transpose of A.

(It is trivial to verify that $L_A(\cdot)$, the Lyapunov mapping, is a linear transformation on the linear space M_n of $n \times n$ matrices.)

Lyapunov's theorem is usually expressed as statement a) of

Theorem 1: The following three statements are equivalent:

a) $A \in S$ = there exists $G \in \Pi$ such that $L_A(G) = -I$;
b) A ∈ S implies for every G ∈ N, there exists G ∈ Π such that \(I_A(G) = G \) \(G \) there exists \(G \) \(N \) and there exists \(G \) \(\Pi \) such that \(I_A(G) = G \). [Taussky, 1964; p. 6, thms 2-3];

c) Let \(C = A + S \) (a real and < 0, S \(I H \)) and \(D = \text{diag}(d_1, \ldots, d_n) \) with \(d_i \) real \((i=1, \ldots, n) \). Then \(CD \in S \Rightarrow d_i > 0 \) for all \(i \). [Taussky, 1961, J. Math Anal. & App.]

The equivalences are proven (essentially) in Taussky's articles. An analytic proof a) is in Bellman, pp. 242-245, and a topological proof in Ostrowski & Schneider.

Theorem 1 suggests that the operator \(I_A(\cdot) \) might give rise to other tests for stability; such usefulness is limited, however, by the following

Theorem 2: The range of \(I_A(H) \) as a function of \(H \in \Pi \) and \(A \in S \) is that subset of \(H \) with \(\nu \neq 0 \) (where \(\nu \) denotes the number of characteristic vectors with negative real parts). [Stein, p. 352, thm 2].

Some useful theorems result if further restrictions are imposed on \(A \) besides stability. These theorems are obtained via a topological route and require additional concepts.

Definition: The **inertia** of an \(n \times n \) matrix \(X \) is the ordered triple of integers \((\pi(X), \nu(X), \delta(X)) = \text{In}(X)\) where \(\pi(X) \) is the number of characteristic values of \(X \) whose real parts are positive, \(\nu(X) \) the number whose real parts are negative, and \(\delta(X) \) the number whose real parts are 0. If \(n \times n \) matrices \(M \) and \(N \) possess the same inertia, this will be denoted by \(M \equiv N \).

Let \(M \) and \(N \) be \(n \times n \) hermitian matrices. \(M \) and \(N \) are congruent (denoted \(M \equiv N \)) \(\exists P \) non-singular such that \(M = P^*NP \).

Recall that all norms in the set of all \(n \times n \) matrices \(M_n \) induce the same topology. In \(M_n \) so topologized, matrices \(M \) and \(N \) are connected \(\exists \) there exists a connected set containing both \(M \) and \(N \). The relationship of being connected is an equivalence relation, which will be denoted by \(\equiv \). \(M \) and \(N \) are arc-wise connected \(\exists \) there exists a continuous function \(f \) from the real interval \([0,1]\) into \(M_n \) such that \(f(0) = M \) and \(f(1) = N \). This, too, is an equivalence relation in \(M_n \) and will be denoted by \(\sim \).

The preceding concepts are brought together by the following theorem:

Theorem 3: In the set \(N_n \) of all non-singular \(n \times n \) matrices with the relative topology induced by any norm, \(A \equiv B \) and \(A \equiv B \) \((\forall A, B \in N_n) \).

[Schneider; pp. 818-819, lemmata 1 & 2]. Let \(H \equiv P \) denote the set of all \(n \times n \) hermitian matrices of rank \(r \). In \(H \equiv P \) with the relative topology induced by any norm the four equivalence relations \(\equiv, \equiv, \equiv, \equiv \) coincide. [Schneider; p. 820].

The relationship between algebraic features of hermitian matrices and topological features expressed by theorem 3 makes it possible to discover the variation in signature induced by the Lyapunov mapping \(I_A(\cdot) \) whenever \(A \in S \) is normal and \(H \in H \).

Theorem 4: If \(A \in S \) is normal, then for any \(H \in H \) with \(\text{In}(H) = (\pi, \nu, \delta) \), \(\text{In}(I_A(H)) = (\nu, \pi, \delta) \).

Proof: Let \(A \in S \) be normal, \(\{a_i\} \equiv H \) be its characteristic values, \(H \in H \), \(\text{In}(H) = (\pi, \nu, \delta) \), and \(I_A(H) = AH + HA^* = C \).

Since \(A \) is normal, it is unitarily similar to a diagonal matrix: \(VAV^* = \text{diag}(a_1, \ldots, a_n) \), \(V \) unitary. Also a basis for \(n \)-dimensional space can be
formed from the characteristic vectors of A, $(a_i)^T$.

For any i, $a_i C - a_i(A^H H A^*) = a_i a_i H + a_i H A^* - a_i H(a_i I + A^*) = \text{rank of } H$ (since $a_i I + A^*$ is non-singular, for the characteristic values of $-A^*$ are $(-a_i)^T$ and $(a_i)^T \cap (-a_i)^T = \emptyset$ because real part of a_i = real part of $a_i < 0$ (i=1,...,n)). Therefore, rank $(H) = \text{rank } (Z_A(H))$.

Because Z_A is a linear transformation of M_n onto itself, it is continuous. If Z_A is restricted to $H \subseteq M_n$ it is continuous and onto H. Therefore, Z_A maps topologically connected components of H onto components of H since rank is preserved by Z_A. But by theorem 3 topologically connected components coincide with inertial components. Therefore, Z_A maps $\text{In}(H)$ on $\text{In}(C)$.

$H \in H$ and since VHV^* is congruent to H, $\text{In}(VHV^*) = \text{In}(H)$. Hence, $\text{In}(Z_A(VHV^*)) = \text{In}(Z_A(H)) = \text{In}(C)$.

Let $D = Z_A(VHV^*) - A(VHV^*) + (VHV^*)A^*$. Then $V^*DV = (V^*AV)H + H(V^*A^*V).$ Because $D \in H$, $\text{In}(Z_A(VHV^*)) = \text{In}(Z_A(VHV^*)) = \text{In}(C)$. $Z_A(VHV^*)(K)$ is of the form $\text{diag}(a_1, a_2, ..., a_n) = \text{diag}(a_1, a_2, ..., a_n)$, where $R(a)$ denotes the real part of complex number a. Let μ the mxm identity matrix, and O_n the mxmO_n matrix. Since $R(a_i) < 0$ (i=1,...,n), $\text{In}(Z_A(VHV^*)(K)) = (\mu, \pi, \delta)$. Therefore, $\text{In}(C) = (\mu, \pi, \delta)$.

QED

The preceding theorem was based on the unitary similarity of A to a diagonal matrix; this property was used first to show the invariance of rank and then to display the inertia when both A and H were expressed in canonical form. The next theorem generalizes the last in that A need be similar (not unitarily similar) to a diagonal matrix, but it is more restrictive of the inertia of H.

Theorem 5: If $A \in S$ has only simple elementary divisors, then $Z_A(H) = N$ and $Z_A(N) = I$.

Proof: Since A has only simple elementary divisors, it is similar to a diagonal matrix. As in the proof of the preceding theorem, rank $(H) = \text{rank } (Z_A(H))$. Likewise, Z_A maps $\text{In}(H)$ on $\text{In}(Z_A(H))$. By Lyapunov's theorem (1a), $\exists H \in Z_A(H) : Z_A(H) = -I \in N$. Therefore, $Z_A(N) \subseteq N$. But by the alternative version (1b) of Lyapunov's theorem, $N \subseteq Z_A(N)$.

Therefore, $Z_A(N) = I$.

QED

REFERENCES

4. Stein, P. "On the Ranges of Two Functions of Positive Definite

