A CHARACTERIZATION OF THE ALGEBRA OF HOLOMORPHIC FUNCTIONS
ON A SIMPLY CONNECTED DOMAIN

DERMING WANG and SALEEM WATSON
Department of Mathematics and Computer Science
California State University, Long Beach
Long Beach, California 90840

(Received August 3, 1987)

ABSTRACT: Let A be a singly-generated \mathcal{F}-algebra. It is shown that A is isomorphic to $H(\Omega)$ where Ω is a simply connected domain in \mathbb{C} if and only if A has no topological divisors of zero. It follows from this that there are exactly three \mathcal{F}-algebras (up to isomorphism) which are singly generated and have no topological divisors of zero.

KEY WORDS AND PHRASES. \mathcal{F}-algebras, holomorphic functions, topological divisors of zero
1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 46J35

1. INTRODUCTION.

The algebra $H(\Omega)$ of holomorphic functions on a domain $\Omega \subseteq \mathbb{C}$ with pointwise operations and compact-open topology is an interesting example of an \mathcal{F}-algebra. This algebra has been characterized in terms of some of the special properties it enjoys that are derived from the fact that it consists of holomorphic functions. (See for example [1], [2], [3], [4] and [5] for characterizations in terms of the local maximum modulus principle, the Cauchy estimate, Montel's theorem, the existence of derivations, and Taylor's theorem.) In [6] a characterization of the algebra of entire functions in terms of Liouville's theorem is given.

Watson [5] shows that an \mathcal{F}-algebra A which has a Schauder basis that is generated by an element $z \in A$ with open spectrum is algebraically and topologically isomorphic to $H(\Omega)$ where Ω is an open disk in \mathbb{C}. In this paper we study \mathcal{F}-algebras that are generated by a single element z (without requiring that z generate a basis for A). Of course, this condition alone is not enough to completely describe the algebra $H(\Omega)$ among \mathcal{F}-algebras. We will show, however, that this together with the condition that A has no topological divisors of zero, completely characterizes $H(\Omega)$ for a simply connected domain Ω. It follows from this that there are exactly three singly generated \mathcal{F}-algebras (up to isomorphism) which have no topological divisors of zero.

2. PRELIMINARIES.

An \mathcal{F}-algebra is a complete metrizable locally m-convex algebra. (All the algebras we consider are assumed to be commutative algebras over \mathbb{C}.) The topology of such an algebra is given by an increasing sequence of seminorms $\{p_n : n \in \mathbb{N}\}$. Each p_n determines a Banach algebra A_n which is the completion of $A/\ker(p_n)$. If $n \leq m$ then the natural homomorphism
from $A/\ker(p_m)$ to $A/\ker(p_n)$ induces a norm decreasing homomorphism $\tau_{nm}: A_m \rightarrow A_n$ whose range is a dense subalgebra of A_n. The Banach algebras A_n with maps τ_{nm} form an inverse limit system and $\lim_n (A_n, \tau_{nm})$ is topologically and algebraically isomorphic to A.

The maximal ideal space of A is the space $\mathfrak{m}(A)$ consisting of all non-zero continuous multiplicative linear functionals on A endowed with the Gelfand topology. This topology is the weak topology on $\mathfrak{m}(A)$ generated by the Gelfand transforms $\hat{x}: \mathfrak{m}(A) \rightarrow \mathbb{C}$ defined by $\hat{x}(f) = f(x)$. The map $\gamma: A \rightarrow \hat{A}$ is a continuous homomorphism onto the algebra $\hat{A} \subset C(\mathfrak{m}(A))$ of Gelfand transforms. For each $n \in \mathbb{N}$ the quotient map τ_n from A onto $A/\ker(p_n)$ induces a homeomorphism $\tau_n^*\mathfrak{m}(A)$ of the maximal ideal space $\mathfrak{m}(A_n)$ of A_n onto a compact subset M_n of $\mathfrak{m}(A)$. For $n \leq m$ we have $M_n \subset M_m$ and $\mathfrak{m}(A) = \bigcup M_n$.

The spectrum of $z \in A$ is the set $\sigma = \sigma(z) = \{f(z) \mid f \in \mathfrak{m}(A)\}$. For each $n \in \mathbb{N}$ the set $\sigma_n = \sigma_n(z) = \{f(z) \mid f \in M_n\}$ and $\sigma = \bigcup \sigma_n$. The element $z \in A$ generates A if A is the smallest closed subalgebra containing z and e (the identity of A). In this case the spectrum map $\varphi: \mathfrak{m}(A) \rightarrow \sigma(z)$ defined by $f \mapsto f(z)$ is a continuous bijection $[7]$.

An element z in a Banach algebra B is a topological divisor of zero if the multiplication map $M_z: A \rightarrow zA$ is not an isomorphism (i.e., does not have a continuous inverse). In an \mathcal{F}-algebra A, z is called a topological divisor of zero if for each sequence $(p_n: n \in \mathbb{N})$ of seminorms defining the topology of A there exists $k \in \mathbb{N}$ such that $\tau_k(z)$ is a topological divisor of zero in the Banach algebra A_k $[8$, pp. 46-47$].

3. CHARACTERIZING $H(\Omega)$

Let $\Omega \subset \mathbb{C}$ be a simply connected domain. The algebra $H(\Omega)$ of holomorphic functions on Ω is an \mathcal{F}-algebra in the compact-open topology. It is well known that $H(\Omega)$ has no (nonzero) topological divisors of zero $[9]$, and is singly-generated. We will show that these last two properties of $H(\Omega)$ completely characterize it among \mathcal{F}-algebras.

For the rest of this paper A will denote an \mathcal{F}-algebra with identity e which is generated by z, where z is not a scalar multiple of e, and which has no nonzero topological divisors of zero.

Lemma 1. A is semisimple and so the Gelfand transform is a bijection.

Proof: Suppose $y \in \text{Rad}(A)$, $y \neq 0$. Then $\sigma(y) = \{0\}$ and by $[8$, Proposition 11.8$]$ y is a topological divisor of zero.

Lemma 2. The spectrum $\sigma(z)$ is a domain in \mathbb{C}.

Proof: If $\lambda \in \sigma(z)$ is a boundary point of $\sigma(z)$, then again by $[8$, Proposition 11.8$]$, $z - \lambda e$ is a topological divisor of zero. Thus $\sigma(z)$ is open.

If $\sigma(z)$ includes the two components U_1 and U_2, then the characteristic functions h_1 of U_1 and h_2 of U_2 are analytic on $\sigma(z)$. By the functional calculus there exist $x_1, x_2 \in A$ with $\tilde{x}_1 = h_1(\tilde{z})$ and $\tilde{x}_2 = h_2(\tilde{z})$. Clearly $\tilde{x}_1 \tilde{x}_2 = 0$ so by Lemma 1 $x_1 x_2 = 0$ and thus these elements are nonzero (topological) divisors of zero.

Lemma 3. The domain $\sigma(z)$ is simply connected.

Proof: Let $\varphi: \mathfrak{m}(A) \rightarrow \sigma(z)$ be the spectrum map and for $t \in \sigma(z)$ we use the notation $f_t = \varphi^{-1}(t)$. For each $x \in A$ define $\tilde{x}: \sigma(z) \rightarrow \mathbb{C}$ by $\tilde{x}(t) = \tilde{x}(\varphi^{-1}(t)) = \varphi(f_t)$. We show that \tilde{x} is analytic on $\sigma(z)$. Since A is generated by z there exists a sequence of polynomials $p_n = p_n(z)$ converging to x in A and so $f(p_n(z)) \rightarrow f(x)$, for every $f \in \mathfrak{m}(A)$. For $t \in \sigma(z)$, $p_n(t) = p_n([f_t(z)]) = f_t(p_n(z))$ converges to $f_t(x) = \tilde{x}(f_t)$, so each \tilde{x} is a pointwise limit of polynomials on $\sigma(z)$. We now show that this convergence is uniform on
compact subsets of $\sigma(z)$ and so each \tilde{x} is analytic on this spectrum. Since A has no topological divisors of zero, for each $n \in \mathbb{N}$ there exists m_n such that $\sigma_n \subseteq \text{int} \sigma_m$ (see Arens [9]). So without loss of generality, we may assume that for $n = 1, 2, \ldots$,

$$\sigma_n \subseteq \text{int} \sigma_{n+1} \subseteq \sigma_{n+1}$$

and $\sigma = \bigcup \text{int} \sigma_n = \bigcup \sigma_n$.

Since $\varphi|\mathcal{M}_n$ is a homeomorphism onto its image $\varphi(\mathcal{M}_n) = \sigma_n$, it follows that if K is a compact subset of σ there exists $n \in \mathbb{N}$ such that $K \subseteq \text{int} \sigma_n \subseteq \sigma_n$. Thus $\varphi^{-1}(K) \subseteq \varphi^{-1}(\sigma_n) = \mathcal{M}_n$ and so $\varphi^{-1}(K)$ is a compact subset of $\mathcal{N}(A)$. Now $p_n \to x$ by the continuity of the Gelfand map γ, $p_n \to \tilde{x}$ in \tilde{A}, i.e., the convergence is uniform on compact subsets of $\mathcal{N}(A)$. Thus for $\varepsilon > 0$ and sufficiently large n,

$$|p_n(f) - \tilde{x}(f)| < \varepsilon$$

for $f \in \varphi^{-1}(K)$, which is the same as

$$|p_n(t) - \tilde{x}(t)| < \varepsilon$$

for $t \in K$. Thus each \tilde{x} is the limit of polynomials, uniformly on compact subsets of $\sigma(z)$, and hence is analytic there.

Let $h \in H(\sigma(z))$. We show that h is the limit of polynomials in $H(\sigma(z))$, then it follows that $\sigma(z)$ is simply connected. Using the functional calculus for \mathcal{S}-algebras we find $x \in A$ such that $\tilde{x}(f) = h(\tilde{x}(f))$, $f \in \mathcal{N}(A)$. Therefore $h = \tilde{x}$. This together with the preceding paragraph completes the proof.

Lemma 4. $\sigma(z)$ is homeomorphic with $\mathcal{N}(\lambda)$.

Proof: The map φ is a continuous bijection. But $x \circ \varphi^{-1} = \tilde{x}$ is continuous for each $\tilde{x} \in \tilde{A}$ and so the continuity of φ^{-1} follows from the fact that the topology of $\mathcal{N}(A)$ is the weak topology generated by λ.

Lemma 4 may also be derived from [7, Theorem 1.3]. Notice that Lemmas 3 and 4 imply that $\mathcal{N}(A)$ is homeomorphic to the open unit disc. We now prove our main result.

Theorem 1. An \mathcal{S}-algebra A is algebraically and topologically isomorphic to $H(\Omega)$ for a simply connected domain Ω if and only if A is singly-generated and has no nonzero topological divisors of zero.

Proof: That the \mathcal{S}-algebra $H(\Omega)$ has these properties is discussed at the beginning of this section.

Conversely, let $\tilde{A} = (\tilde{x} | x \in A)$ and equip \tilde{A} with the compact open topology. From the proof of Lemma 3, $\tilde{A} = H(\sigma(z))$ algebraically and topologically. Also, \tilde{A} and \tilde{A} are isomorphic as \mathcal{S}-algebras via the map $\delta: \tilde{A} \to \tilde{A}$ by $\tilde{x} \to \tilde{x} \circ \varphi^{-1}$. Since the Gelfand map $\gamma: A \to \tilde{A}$ is bijective by Lemma 1, it follows that the map $\delta \circ \gamma$ is a continuous bijection of A onto $\tilde{A} = H(\sigma(z))$. The open mapping theorem now yields the result.

The notion of topological divisor of zero we used above is that due to Michael [8, p. 47]. Our Theorem 1 does not remain valid if that notion is replaced by the stronger definition of Arens [10] (called strong topological divisor of zero by Michael). In fact, the \mathcal{S}-algebra $\mathcal{C}[X]$ of formal power series (with the topology of pointwise convergence in the coefficients) is singly generated and has no strong topological divisors of zero [11]. But this algebra is not isomorphic to $H(\Omega)$ for any domain Ω.

The Riemann mapping theorem yields the following corollary:

Corollary 1. There are (up to isomorphism) exactly three \mathcal{S}-algebras which are singly generated and have no nonzero topological divisors of zero. Namely, \mathbb{C}, the algebra $H(D)$ where D is the open unit disk, and the algebra \mathcal{S} of entire functions.
Brltel [6] (see also [12] and [13]) gave a characterization of the algebra of entire functions as a singly-generated Liouville algebra without topological divisors of zero. A Liouville algebra is an \mathcal{F}-algebra in which every element with bounded spectrum is a scalar multiple of the identity. We give another proof of Brltel's theorem based on our Theorem 1.

THEOREM 2. (Brltel) An \mathcal{F}-algebra A is topologically and algebraically isomorphic to the algebra \mathcal{E} of entire functions if and only if A is a singly-generated Liouville algebra with no nonzero topological divisors of zero.

PROOF: By Theorem 1, $\sigma(z)$ is simply connected and A is isomorphic to $H(\sigma(z))$. If $\sigma(z) \neq \mathbb{C}$ then there is a one-to-one analytic function ψ from $\sigma(z)$ onto \mathbb{D}. Thus there exists $x \in A$ such that $\hat{x} = \psi \cdot \hat{z}$. Clearly x is not a scalar multiple of \hat{z} and $\sigma(x) = D$, contradicting the assumption that A is Liouville.

A natural extension of the notion of a simply connected domain to \mathbb{C}^n is that of a Runge domain. If Ω is a Runge domain in \mathbb{C}^n then $H(\Omega)$ is n-generated and has no nonzero topological divisors of zero. We pose the question of whether a finitely-generated \mathcal{F}-algebra A with no nonzero topological divisors of zero is isomorphic to $H(\Omega)$ for a Runge domain Ω. In the case that A has a finitely-generated Schauder basis in which the joint spectrum of the generators is an open set in \mathbb{C}^n, it is shown in [14] that A is isomorphic to $H(\Omega)$ for a complete logarithmically convex Reinhardt domain Ω.

REFERENCES

Submit your manuscripts at http://www.hindawi.com