A NOTE ON WEAKLY QUASI CONTINUOUS FUNCTIONS

TAKASHI NOIRI

Department of Mathematics
Yatsushiro College of Technology
Yatsushiro, Kumamoto, 866 Japan

(Received March 10, 1987 and in revised form September 15, 1987)

ABSTRACT. In [1], it was shown that a function \(f : X \to Y \) is weakly quasi continuous if and only if \(f^{-1}(\text{Cl}(V)) \subseteq \text{Cl}(\text{Int}(f^{-1}(\text{Cl}(V)))) \) for every open set \(V \) of \(Y \). By utilizing this result, the present author [2] showed that a function \(f : X \to Y \) is weakly quasi continuous if and only if for every regular closed set \(F \) of \(Y \), \(f^{-1}(F) \) is semi-open in \(X \). In this note, the author shows that these results are false and corrects the proofs of Theorem 6.1.7 and Lemma 6.4.4 of [2].

KEY WORDS AND PHRASES. weakly quasi continuous.

1980 AMS SUBJECT CLASSIFICATION CODE. 54C10.

The purpose of this note is to point out that Theorem 2 of [1] and Theorem 4.2 of [2] are false, and to correct the proofs of Theorem 6.1.7 and Lemma 6.4.4 of [2].

Let \(S \) be a subset of a topological space. The closure and the interior of \(S \) are denoted by \(\text{Cl}(S) \) and \(\text{Int}(S) \), respectively. A subset \(S \) is said to be semi-open [3] (resp. regular-closed) if \(S \subseteq \text{Cl}(\text{Int}(S)) \) (resp. \(S = \text{Cl}(\text{Int}(S)) \)). A function \(f : X \to Y \) is said to be semi-continuous [3] (resp. semi-open [4]) if for every open set \(V \) of \(Y \) (resp. \(X \)), \(f^{-1}(V) \) (resp. \(f(V) \)) is semi-open in \(X \) (resp. \(Y \)). A function \(f : X \to Y \) is said to be almost-continuous [5] if for each \(x \in X \) and each open neighborhood \(V \) of \(f(x) \), \(\text{Cl}(f^{-1}(V)) \) is a neighborhood of \(x \).

DEFINITION. A function \(f : X \to Y \) is said to be weakly quasi continuous [1] (briefly \(\text{w.q.c.} \)) if for each \(x \in X \), each open set \(U \) containing \(x \) and each open set \(V \) containing \(f(x) \), there exists an open set \(G \) of \(X \) such that \(\emptyset \neq G \subseteq U \) and \(f(G) \subseteq \text{Cl}(V) \).

Popa and Stan [1] obtained the following characterization of \(\text{w.q.c.} \) functions.

THEOREM A ([1, Theorem 2]). A function \(f : X \to Y \) is \(\text{w.q.c.} \) if and only if \(f^{-1}(\text{Cl}(V)) \subseteq \text{Cl}(\text{Int}(f^{-1}(\text{Cl}(V)))) \) for every open set \(V \) of \(Y \).

In [2], among others, the author established the following three statements.

THEOREM B ([2, Theorem 4.2]). A function \(f : X \to Y \) is \(\text{w.q.c.} \) if and only if for every regular closed set \(F \) of \(Y \), \(f^{-1}(F) \) is semi-open in \(X \).

THEOREM C ([2, Theorem 6.1.7]). The composition \(g \circ f : X \to Z \) of a continuous function \(f : X \to Y \) and a semi-continuous function \(g : Y \to Z \) is not necessarily \(\text{w.q.c.} \).
LEMMA D ([2, Lemma 6.4.4]). Let \(f : X \to Y \) be an open continuous surjection and \(g : Y \to Z \) a function. If \(g \circ f : X \to Z \) is w.q.c., then \(g \) is w.q.c.

The author utilized Theorem A in order to prove Theorem B. Moreover, Theorem B was utilized in the proofs of Theorem C and Lemma D. However, it follows from Example 2 (below) that the necessity of Theorem A is false and hence so is Theorem B. Thus, it is necessary to revise the proofs of Theorem C and Lemma D. For this purpose, we have the following modification of Theorem A.

THEOREM 1. A function \(f : X \to Y \) is w.q.c. if and only if for every open set \(V \) of \(Y \), \(f^{-1}(V) \subseteq \text{Cl}(\text{Int}(f^{-1}(\text{Cl}(V)))) \).

PROOF. Necessity. Suppose that \(f \) is w.q.c. Let \(V \) be any open set of \(Y \) and \(x \in f^{-1}(V) \). For each open set \(G \) of \(X \) containing \(x \), there exists an open set \(U \) of \(X \) such that \(\emptyset \neq U \subseteq G \) and \(f(U) \subseteq \text{Cl}(V) \). Therefore, it follows that \(U \subseteq \text{Cl}(\text{Int}(f^{-1}(\text{Cl}(V)))) \) and \(U \subseteq \text{Int}(f^{-1}(\text{Cl}(V))) \). Since \(\emptyset \neq U \subseteq \text{Int}(f^{-1}(\text{Cl}(V))) \), \(x \in \text{Cl}(\text{Int}(f^{-1}(\text{Cl}(V)))) \) and hence \(f^{-1}(V) \subseteq \text{Cl}(\text{Int}(f^{-1}(\text{Cl}(V)))) \).

Sufficiency. Let \(x \) be any point of \(X \), \(G \) any open set of \(X \) containing \(x \) and \(V \) any open set of \(Y \) containing \(f(x) \). By hypothesis, we have \(x \in f^{-1}(V) \subseteq \text{Cl}(\text{Int}(f^{-1}(\text{Cl}(V)))) \) and hence \(G \cap \text{Int}(f^{-1}(\text{Cl}(V))) \neq \emptyset \). Put \(G \cap \text{Int}(f^{-1}(\text{Cl}(V))) = U \), then we obtain \(\emptyset \neq U \subseteq G \) and \(f(U) \subseteq \text{Cl}(V) \). This shows that \(f \) is w.q.c.

The following example shows that the necessities of Theorems A and B are both false.

EXAMPLE 2. Let \(X = \{a, b, c\} \), \(\tau = \{\emptyset, X, \{a\}, \{b, c\}\} \) and \(\sigma = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \). Let \(f : (X, \tau) \to (X, \sigma) \) be the identity function. Then \(f \) is w.q.c. by Theorem 1. Let \(V = \{a\} \in \sigma \), then \(\text{Cl}(V) = \{a, c\} \) is a regular closed set of \((X, \tau) \). However, \(f^{-1}(\text{Cl}(V)) = \{a, c\} \) and \(\text{Cl}(\text{Int}(f^{-1}(\text{Cl}(V)))) = \{a\} \). Thus, \(f^{-1}(\text{Cl}(V)) \) is not semi-open in \((X, \tau) \) and \(f^{-1}(\text{Cl}(V)) \notin \text{Cl}(\text{Int}(f^{-1}(\text{Cl}(V)))) \).

REMARK 3. (1) It follows immediately from Theorem 1 that the sufficiencies of Theorems A and B are both true.

(2) In the proof of [2, Theorem 6.1.7], the set \(V = \{b, c, d\} \) is clopen in \((Z, \emptyset) \), \((g \circ f)^{-1}(V) = \{b, c, d\} \) and \(\text{Cl}(\text{Int}(g \circ f^{-1}(\text{Cl}(V)))) = \{b\} \). Therefore, by Theorem 1 \(g \circ f \) is not w.q.c. and hence it is not semi-continuous.

Next, we give the correct proof of Lemma D in the improved form.

THEOREM 4. Let \(f : X \to Y \) be a semi-open almost continuous surjection and \(g : Y \to Z \) a function. If \(g \circ f : X \to Z \) is w.q.c., then \(g \) is w.q.c.

PROOF. Let \(W \) be any open set of \(Z \). Since \(g \circ f \) is w.q.c., by Theorem 1 we have \((g \circ f)^{-1}(W) \subseteq \text{Cl}(\text{Int}(g \circ f^{-1}(\text{Cl}(W)))) \). Since \(f \) is almost continuous, for every subset \(A \) of \(X \), \(f(\text{Cl}(\text{Int}(A))) \subseteq \text{Cl}(f(\text{Int}(A))) \) [6, Theorem 6]. Moreover, since \(f \) is semi-open, \(f(\text{Int}(A)) \subseteq \text{Cl}(\text{Int}(f(A))) \) [4, Theorem 9] and hence \(f(\text{Cl}(\text{Int}(A))) \subseteq \text{Cl}(\text{Int}(f(A))) \) for every subset \(A \) of \(X \). Therefore, we obtain \(g^{-1}(W) \subseteq \text{Cl}(\text{Int}(g^{-1}(\text{Cl}(W)))) \). It follows from Theorem 1 that \(g \) is w.q.c.

THEOREM 5. Let \(f : X \to Y \) be an open continuous surjection. A function \(g : Y \to Z \) is w.q.c. if and only if the composition \(g \circ f : X \to Z \) is w.q.c.

PROOF. Necessity. Let \(W \) be any open set of \(Z \). Since \(g \circ f \) is w.q.c., by Theorem 1 \(g^{-1}(W) \subseteq \text{Cl}(\text{Int}(g^{-1}(\text{Cl}(W)))) \). Since \(f \) is open continuous, for every subset \(B \) of \(Y \), \(f^{-1}(\text{Cl}(\text{Int}(B))) \subseteq \text{Cl}(f^{-1}(B)) \). Therefore, we obtain \((g \circ f)^{-1}(W) \subseteq \text{Cl}(\text{Int}(g \circ f^{-1}(\text{Cl}(W)))) \) and hence by Theorem 1 \(g \circ f \) is w.q.c.

Sufficiency. Since an open continuous function is semi-open almost continuous, this is an immediate consequence of Theorem 4.
REFERENCES

5. HUSAIN, T. Almost continuous mappings, Prace Mat. 10 (1966), 1-7.
Submit your manuscripts at http://www.hindawi.com