1. INTRODUCTION. Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) be analytic in \(|z| < R \). For a non-decreasing sequence of positive numbers \(\{d_n\} \), the Gelfond-Leontev (G-L) derivative of \(f \) is defined as
\[
Df(z) = \sum_{n=1}^{\infty} d_n a_n z^{n-1}.
\]

The \(k \)th iterate \(D^k f, k=1,2,\ldots \), of \(D \) is given by
\[
D^k f(z) = \sum_{n=k}^{\infty} d_{n-k} \cdots d_1 a_n z^{n-k}
\]
where, \(e_0 = 1 \) and \(e_n = (d_1 d_2 \cdots d_n)^{-1} \), \(n=1,2,\ldots \). If \(d_n \equiv 1 \), \(Df \) is the ordinary derivative of \(f \); whereas, if \(d_n \equiv 1 \), \(D \) is the shift operator \(L \) which transforms
\[
f(z) = \sum_{n=0}^{\infty} a_n z^n \quad \text{into} \quad Lf(z) = \sum_{n=1}^{\infty} a_n z^{n-1}.
\]

Let,
\[
\psi(z) = \sum_{n=0}^{\infty} e_n z^n
\]
and have radius of convergence \(R_0 \). From the monotonicity of \(\{d_n\} \), we have
\[
R_0 = \lim_{n \to \infty} d_n = \sup \{d_n\}.
\]

Clearly, \(\psi(0) = 1 \) and \(D\psi(z) = \psi(z) \). Thus, \(\psi(z) \) bears the same relationship to the operator \(D \) that the function \(\exp(z) \) bears to the ordinary differentiation.

For an entire function \(f \), Nachbin used the function \(\psi(z) \) as a comparison function for measuring the growth of maximum modulus of \(f \) on \(|z| = r \). Thus, the
growth parameter \(\Psi \)-type of \(f \) is defined as the infimum of the positive numbers \(\tau \) such that, for sufficiently large \(r \),

\[
|f(z)| < M\psi(\tau r)
\]

(1.4)

where, \(\psi(z) \) is entire and \(M \) is a positive constant. We denote \(\Psi \)-type of \(f \) as \(\tau_\psi(f) \). It is known \([2,p.6]\) that

\[
\tau_\psi(f) = \lim_{n \to \infty} \sup \left| a_n \right|^{1/n}
\]

(1.5)

For \(d_n \equiv n \), the \(\Psi \)-type of an entire function \(f \) reduces to its classical exponential type and the formula (1.5) gives its well known coefficient characterisation \([3, p.11]\).

The comparison function \(\psi(z) \) can also be used to define a measure of growth analogous to classical order \([3, p.8]\) of an entire function. Thus, for an entire function \(f \), let the \(\Psi \)-order \(\rho_\psi(f) \) of \(f \) be defined as the infimum of positive numbers \(\rho \) such that, for sufficiently large \(r \),

\[
|f(z)| < K\psi(r^\rho)
\]

(1.6)

where \(\psi(z) \) is entire and \(K \) is a positive constant.

Shah and Trimble \([4,5]\) showed that if \(f \) is entire then, the assumption that the classical derivatives \(f^{(p)} \) are univalent in \(\Delta = \{z: |z| < 1\} \) for a suitable increasing sequence \(\{n_p\}_{p=1}^\infty \) of positive integers affects the growth of the maximum modulus of \(f \). If instead, we assume that the G-L derivatives \(D^n_nf \) of an entire function \(f \) are univalent in \(\Delta \), then it is natural to enquire in what way the \(\Psi \)-type and \(\Psi \)-order of \(f \) are influenced. The present paper is an attempt in this direction. In Theorem 1, we find that if \(f \) is entire, \(D^n_nf \) are univalent in \(\Delta \) and

\[
\lim_{p \to \infty} \sup (n_{p+1} - n_p) = \mu, \ 1 < \mu < \infty,
\]

then the \(\Psi \)-type \(\tau_\psi(f) \) of \(f \) must satisfy

\[
\tau_\psi(f) < 2(d(\mu+1) \cdots d(2))^{1/\mu}.
\]

Further, if \(\mu = \infty \), then \(f \) need not be of finite \(\Psi \)-type. Our Theorem 2 shows that if \(f \) is entire, \(D^n_nf \) are univalent in \(\Delta \) and \(n_p \sim n_{p+1} \) as \(p \to \infty \), then

\[
\rho_\psi(f) < \frac{1}{\log d(n_{p+1} - n_p)}
\]

(1.7)

It is clear that if \(0 < \rho_\psi(f) < 1 \), then the above inequality gives no relationship between \(D^n_nf \) and the \(\Psi \)-order of an entire function \(f \). In fact, no such relation of this nature exists. This is illustrated in Theorem 3, wherein for any given
\(p, 0 < p < 1,\) and any given increasing sequence \(\{n_p\}_{p=1}^{\infty}\) of positive integers, we construct an entire function \(h,\) of \(\psi\)-order \(p,\) such that \(D^n_h\) is univalent in \(\Delta\) if and only if \(n = n_p.\)

In the sequel, we shall assume throughout that \(d_n \to \infty\) as \(n \to \infty.\)

2. \(\psi\)-TYPE AND EXPONENTS OF UNIVALENT \(G-L\) DERIVATIVES.

Theorem 1. Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n\) be an entire function and \(\{n_p\}_{p=1}^{\infty}\) be an increasing sequence of positive integers. Let \(D^n f\) be analytic and univalent in \(\Delta.\) Suppose \(\limsup_{p \to \infty} (n_p - n_{p-1}) = \mu, 1 < \mu < \infty.\) Then, the \(\psi\)-type \(T_{\psi}(f)\) of \(f\) satisfies

\[
T_{\psi}(f) < 2(d(\mu+1)\ldots d(2))^{1/\mu}.
\]

Proof. By the hypothesis,

\[
D^n f(z) = \sum_{k=0}^{\infty} d(n_p+k)\ldots d(k+1)a(n_p+k)z^k
\]

are univalent in \(\Delta.\) Since, for any function \(G(z) = b_0 + b_1 z + b_2 z^2 + \ldots,\) univalent in \(\Delta,\) it is known [6] that \(|b_n| < n|b_1|\) for \(n = 2, 3, \ldots,\) we get

\[
|a(n_p+k)| < k^{d_k \ldots d_1} d(n_p+1)\ldots d(2) |a(n_p+1)|
\]

for \(k = 1, 2, \ldots\) and \(p = 2, 3, \ldots.\) In particular, putting \(k = n_{p+1}-n_1 + 1,\) and inducting upon \(p,\) we get, for \(p \geq 2\) and \(2 < k < n_{p+1}-n_1 + 1,\)

\[
|a(n_p+k)| < A_k d_k^{d_k \ldots d_1} d(n_p+1)\ldots d(2)
\]

where \(A = d(n_1+1)\ldots d(2)|a(n_1+1)|.\) Hence, for sufficiently large \(p,

\[
\frac{|a(n_p+k)|}{e(n_p+k)} < (1+o(1))(d_k \ldots d_1)^{1/(n_p+k)} (n_{p+1}-n_1 + 1)\ldots d(2) \leq \frac{1/(n_p+k)}{1/(n_{p+1}-n_1 + 1)}
\]

Since, \((d_k \ldots d_1)^{1/(n_p+k)}\) is an increasing function of \(k,\) and

\((n_{p+1}-n_p) < \mu', \mu' > \mu,\) for sufficiently large \(p,

\[
(d_k \ldots d_1)^{1/(n_p+k)} < (d(n_{p+1}-n_p+1)\ldots d(1))^{1/(n_p+1)} (1+o(1))
\]
Further [7], for $p > 2$

$$\sum_{i=1}^{P} \frac{1}{(n_i - n_{i-1} + 1)} \frac{p}{n} < \frac{p}{n} < 2 \quad \text{(2.5)}$$

Using (2.5) and the preceding inequality in (2.4), we get for sufficiently large p,

$$\frac{1}{(n + k)} \sum_{p} \frac{a(p + k)}{e(n + k)} < 2(1 + o(1)) \sum_{i=2}^{P} (d(n_i - n_{i-1} + 1) \ldots d(2)) \quad \text{(2.6)}$$

Now, if $a_j > 0$, $t_j > 0$, $\Sigma t_j > 0$ and $\max_{1 \leq j < N-1} \frac{a_j}{N} \leq \frac{a_N}{N}$ then clearly,

$$\frac{1}{\Sigma_{j=1}^{N} a_j} < \frac{a_n}{N} \quad \text{(2.7)}$$

Further, $\log(d(j+1) \ldots d(2))/j$ is an increasing function of j for $1 < j < \nu$, $\nu = 1, 2, \ldots$. Thus, if $1 < j < \nu$,

$$\frac{\log(d(j+1) \ldots d(2))}{j} < \frac{\log(d(\nu+1) \ldots d(2))}{\nu} \quad \text{(2.8)}$$

Let $p > p_o$, $1 < \gamma < \nu$. Suppose t_γ is the number of j_i's in $[p_0, p]$ such that

$$n_{j+1} - n_j = \gamma \quad \text{for} \quad j = j_i$$. Then, by (2.7) and (2.8),

$$\frac{p}{p_o + 1} \sum_{j=1}^{p} \frac{\log(d(n_j - n_{j-1} + 1) \ldots d(2))}{n_j - n_{j-1}} < \frac{\sum_{\gamma=1}^{\nu} t_\gamma (\log(d(\gamma+1) \ldots d(2))}{\nu}$$

The above inequality implies that

$$\sum_{i=2}^{P} \frac{1}{(n_i - n_{i-1} + 1)} \ldots d(2) \quad \frac{p}{n} \quad \frac{p}{p_o + 1} \sum_{j=1}^{p} \log(d(n_j - n_{j-1} + 1) \ldots d(2)) \quad \exp \{O(1)\\}$$

$$\leq \exp \{O(1)\\}$$

Using the estimate (2.9) in (2.6) and proceeding to limits

$$\lim_{k \to \infty} \frac{a_k}{e_k} = \lim_{k \to \infty} \left(\frac{a(p + k)}{e(n + k)} \right) \quad \text{for} \quad 2 < k < n_{p+1} - n_{p+1}, \quad p > 2$$

$$\leq 2(d(\nu+1) \ldots d(2))^{1/\nu}$$

This completes the proof of the theorem.
REMARK 1. In Theorem 1, it is sufficient to take the function \(f \) to be analytic in \(|z| < R \), for some \(R > 0 \), if the sequence \(\{d_n\}_{n=1}^{\infty} \) in the definition of the G-L derivative of \(f \) satisfies the condition \(\lim_{m \to \infty} ((\sum_{i=2}^{m} \log(d(i))/m) = \infty \). In fact, for an analytic function \(f \) in \(|z| < R \), if \(D^n f \) are univalent in \(\Delta \),

\[
\lim_{p \to \infty} \sup_{n \to \infty} \left(\frac{n - n_{p-1}}{p} \right) = \mu, \quad 1 < \mu < \infty, \quad \text{and} \quad \lim_{m \to \infty} \left(\sum_{i=2}^{m} \log(d(i))/m \right) = \infty
\]

holds, then \(f \) is necessarily entire. To see this, we use (2.5) and

\[
\left(d_k \ldots d_1 \right)^{1/(n+k)} < 1 + o(1)
\]

for sufficiently large \(p \) in (2.3) to get

\[
\left| a(n+k) \right|^{1/(n+k)} < 2(1+o(1)) \exp \left(\frac{1}{n_p} \sum_{i=2}^{n} \log(d(n_i - n_{i-1} + 1) \ldots d(2)) \right)
\]

for sufficiently large \(p \). But since, for sufficiently large \(p \),

\[
\frac{1}{n_p} \sum_{i=2}^{n} \log(d(n_i - n_{i-1} + 1) \ldots d(2)) \to 0 \quad \text{as} \quad p \to \infty.
\]

Thus, by (2.10) and the condition \(\lim_{m \to \infty} ((\sum_{i=2}^{m} \log(d(i))/m) = \infty \)

\[
\lim_{k \to \infty} \sup_{p \to \infty} \left| a_k \right|^{1/k} = \lim_{p \to \infty} \sup_{k \to \infty} \left| a(n+k) \right|^{1/(n+k)} ; \quad 2 < k < n_{p+1} - n_{p+1}, \quad p > 2
\]

\[
= 0.
\]

REMARK 2. The inequality (2.1) can be improved by imposing suitable additional restrictions on the sequence \(\{d_n\}_{n=1}^{\infty} \). For example, let the sequence \(\{d_n\}_{n=1}^{\infty} \) be such that

\[
\frac{(d(n+2))^n}{d(n+1) \ldots d(2)} > \frac{2}{3(n+1)}, \quad n=1,2,3, \ldots . \tag{2.11}
\]

Note that (2.11) is satisfied for \(d_n = n^\alpha, \alpha > 1 \).

Because of (2.11), the function \(s(j) \) defined by

\[
s(j) = \log(d(j+1) \ldots d(2)) \log(j+1)
\]

is an increasing function of \(j \) and so for \(j=1,2, \ldots \mu; \mu=1,2, \ldots \)
\[
\log(d(j+1)\ldots d(2)) + \log(1) < \log(d(\mu+1)\ldots d(2)) + \log(\mu+1). \tag{2.12}
\]

Let \(t_\gamma \) be the same as in the proof of Theorem 1. Using (2.7) and (2.12), we get

\[
\frac{\sum_{\gamma=1}^{\mu} t_\gamma (\log(d(\gamma+1)\ldots d(2)) + \log(\gamma+1))}{\sum_{\gamma=1}^{\mu} t_\gamma} = \frac{1}{\sum_{\gamma=1}^{\mu} t_\gamma} \sum_{\gamma=1}^{\mu} t_\gamma (\log(d(\gamma+1)\ldots d(2)) + \log(\gamma+1)) < \log(d(\mu+1)\ldots d(2)) + \log(\mu+1). \nonumber
\]

Again, we have

\[
\frac{\prod_{p=1}^{\mu} \left(\log(d(j+1)\ldots d(2)) + \log(j+1) \right)}{\prod_{p=1}^{\mu} \log(j+1)} < \frac{\prod_{p=1}^{\mu} t_\gamma (\log(d(\gamma+1)\ldots d(2)) + \log(\gamma+1))}{\prod_{p=1}^{\mu} t_\gamma} = \frac{1}{\prod_{p=1}^{\mu} t_\gamma} \sum_{\gamma=1}^{\mu} t_\gamma (\log(d(\gamma+1)\ldots d(2)) + \log(\gamma+1)).
\]

The above inequality, when employed in (2.4), gives

\[
\frac{1}{(n+k)} \frac{\log(d(n^1-n_i-1+1)\ldots d(2))}{\log(1+O(1))} \frac{1}{(n+k)} < \exp \left\{ \frac{\log(d(n^1-n_i-1+1)\ldots d(2))}{\log(n^1-n_i-1+1)} \right\}.
\]

Now, on proceeding to limits, we get

\[
\tau_\psi(f) < (\mu+1)^{1/\mu}(d(\mu+1)\ldots d(2))^{1/\mu}. \tag{2.13}
\]

It is clear that the bound on \(\tau_\psi(f) \) in (2.13) is better than that in (2.1).

Remark 3. By taking \(\mu=1 \), Theorem 1 gives \(\tau_\psi(f) < 2d(2) \), a result recently proved in [8].

Theorem 1 shows that if \((n-p_n) = O(1) \), then \(f \) is of finite \(\psi \)-type.

We now give an example to show that if \(\lim_{p \to \infty} \sup_{p} (n_p-n_{p-1}) = \infty \), then \(f \) need not be of finite \(\psi \)-type.

Example. Let \(\{n_p\}_{p=1}^{\infty} \) be an increasing sequence of positive integers such that \((n_{p+1}-n_p) > 2 \) for all \(p \). Further, assume that the sequence \(\{d_n\}_{n=1}^{\infty} \) is such that

1. \(d_1 = 1 \) and \(\log d(n) \sim \log n \) as \(n \to \infty \)
2. \(n_p = o(n) \)
3. \(\eta_p = o(n \log d(n)) \)
where, $n_p = \sum_{i=2}^{P} \log(d(n_i - n_{i-1} + 1)) \ldots d(2)$.

Let ψ be a non-decreasing step function such that $\psi(n_1) = \psi(n_2)$, and

$$\psi(n_p) = \exp\left(\frac{n_p}{p}\right), \quad p > 2$$

and

$$\psi(x) = \psi(n_p), \quad n_p < x < n_{p+1}.$$

Let

$$g_{j+1}(z) = \begin{cases} \frac{\psi(j)}{d(j+1) \ldots d(2) (j - n_p + 1)} & \text{if } j = n_p \text{ for some } p \\ 0 & \text{otherwise.} \end{cases}$$

Define

$$g(z) = \sum_{j=0}^{\infty} g_j z^j.$$

We first show that g is an entire function. We have

$$\limsup_{k \to \infty} \frac{1}{k} \sum \psi(n_p) \frac{1}{d(n_p+1) \ldots d(2)} = \frac{\exp(n_p/n_p)}{p+1} \limsup_{p \to \infty} \exp\left(\frac{n_p}{p}\right).$$

Since $\log d(n) \sim \log n$ as $n \to \infty$, using the condition (iii), we get from the above inequality that

$$\limsup_{k \to \infty} \frac{|g_k|^{1/k}}{k} = 0.$$

Hence g is entire. It is easily seen that g is of order 1. But, by the condition (ii),

$$\limsup_{k \to \infty} \frac{|g_k|^{1/k}}{k} = \limsup_{p \to \infty} \exp\left(\frac{n_p}{p}\right) = \limsup_{p \to \infty} \exp\left(\frac{n_p}{2p}\right) = \infty.$$

Thus, f is not of finite ψ-type. It remains to see that

$$D^p g(z) = \sum_{k=1}^{\infty} d(n_{p+k}+1) \ldots d(n_{p+k}-n_{p+2}) a(n_{p+k}+1) z^{n_{p+k}-n_{p+1}}$$

are univalent in Δ. To this end, it is enough to prove that

$$\sum_{k=1}^{\infty} \frac{d(n_{p+k}+1) \ldots d(2)}{d(n_{p+k}-n_{p+1}) \ldots d(2)} |a(n_{p+k}+1)|.$$
or, equivalently to show that
\[\psi(n) < \psi(n + 1) \]

Using the definition of \(\psi \), the last inequality reads as
\[\prod_{k=1}^{p+k} \left(\frac{\exp(n - np - 1)}{d(n-k-np+1)\ldots d(2)} \right) < 1. \quad (2.14) \]

Now, an induction on \(k \), gives, for \(k = 1, 2, 3, \ldots \)
\[\exp(n - np - 1) \prod_{k=1}^{p} \left(\frac{\exp(n - np - 1)}{d(n-k-np+1)\ldots d(2)} \right) < 1. \]

Hence, (2.14) is clearly satisfied.

3. \(\psi \)-ORDER AND EXPONENTS OF UNIVALENT G-L DERIVATIVES.

A function \(S(x) \), continuous on \([1, \infty) \), is said to be Slowly Oscillating (S.O.) if for every positive number \(c > 0 \),
\[\lim_{x \to \infty} \frac{S(cx)}{S(x)} = 1. \]

A function \(H(n) \) is said to be the restriction of a Slowly Oscillating function \(S(x) \) if \(S(n) = H(n) \) for every positive integer \(n \). It is known [9] that, as \(k \to \infty \)
\[\sum_{i=1}^{k} H(i) \sim kH(k). \quad (3.1) \]

THEOREM 2. Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) be an entire function of \(\psi \)- order \(\rho_\psi \) and \(\{n_p\}_{p=1}^{\infty} \) be a strictly increasing sequence of positive integers. Let \(D_{np} f \) be analytic and univalent in \(\Delta \), such that \(n_p \sim np+1 \) as \(p \to \infty \). If \(\log d(n) \) is the restriction of a slowly oscillating function on integers, then
\[\rho_\psi(f) \leq \frac{1}{1-\lim_{p \to \infty} \sup \frac{\log d(n-p-1)}{\log d(n)}}. \quad (3.2) \]

We need the following lemmas.

LEMMA 1. Let \(\gamma \) be defined by (1.3). Let \(\gamma_n = \min_{x>0} \psi(x^n)x^{-n} \), \(a > 0 \).

Then,
\[\gamma_n \leq e^{\frac{n(1 - \frac{1}{a})}{a}} \frac{a(n+a)}{a}. \quad (3.3) \]

PROOF. Since \(\{d_n\}_{n=1}^{\infty} \) is increasing, we note that for any pair of integers \(k \) and \(n \), \(e_k \leq e^{n-k} \). Thus,
GROWTH OF ENTIRE FUNCTIONS WITH UNIVALENT DERIVATIVES

\[\psi(x^a) = \sum_{k=0}^\infty \frac{x^a}{k!} \]

Let \(0 < w < 1 \). Setting \(x = w^{1/a} \), we get

\[\psi(x^a)_w^{1-n} \leq e \frac{d_n}{n} \left(\frac{1}{1-w^a} \right)^n. \]

Choosing \(w = (n/n+a)^{1/a} \) to minimize the right-hand side of the above inequality, we have

\[\gamma_n \leq \min_{0 < w < 1} \psi(x^a)_w^{1-n} \leq e \frac{d_n}{n} \left(\frac{(n+a)}{a} \right)^n. \]

Lemma 2. Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) be an entire function of \(\psi \)-order \(\rho \),

where the sequence \(\{d(n)\} \) in \(D_f \) is such that \(\log d(n) \) is the restriction of a slowly oscillating function on positive integers.

Then,

\[\rho \psi(f) = \lim sup_{n \to \infty} \frac{n \log d(n)}{\log |a_n|}. \tag{3.4} \]

Proof. By Cauchy's inequality, we get

\[|a_n| \leq M(r) r^{-n}, \quad M(r) = \max_{|z| < r} |f(z)|. \]

Since \(f \) is of \(\psi \)-order \(\rho \), \(\rho \psi(f) = \rho \), for any \(\varepsilon > 0 \), \(|f(z)| < M \psi(r^{\rho+\varepsilon}). \)

So that

\[|a_n| < M \psi(r^{\rho+\varepsilon}) r^{-n}. \]

Using Lemma 1, we have

\[|a_n| < M e d_n \left(\frac{1}{\rho+\varepsilon} \right)^n. \tag{3.5} \]

But, since \(\log d(n) \) is the restriction of a S.O. function, by (3.1),

\[\log d(n) \sim n \log d(n) \text{ as } n \to \infty. \]

Thus, it follows from (3.5)

\[\lim sup_{n \to \infty} \frac{n \log d(n)}{-\log |a_n|} < \rho. \]

To prove that equality holds in (3.4), suppose that

\[\lim sup_{n \to \infty} \frac{n \log d(n)}{-\log |a_n|} < \rho. \]

Then, there exist \(p_1 < p \) such that \(|a_n| < e_{n_{01}} r^{n_{01}} \) for \(n > n_0 \). It now follows that, for \(|z| = r \),

\[|f(z)| < \sum_{n=0}^{n_0} |a_n| r^n + \sum_{n=n_0+1}^{\infty} |a_n| r^n \]

\[< 0(1) + \sum_{n=n_0+1}^{\infty} e_{n_{01}} r^n. \tag{3.6} \]
Choose

$$N(r) = \frac{\log \psi(r)}{\log r}.$$

It is easily seen that $N(r) \to \infty$ as $r \to \infty$. Since for all values of k and n, $e_n < d_n^{k-n}$, we have

$$\sum_{n=0}^{\infty} \frac{1}{\rho_1} e_n r^n < \sum_{n=0}^{\infty} \frac{1}{\rho_1} r^{n-\rho_1} d_k r^n = \frac{1}{\rho_1} e_k n \sum_{n=0}^{\infty} \left(\frac{r}{d_k} \right)^n.$$

Let k be chosen such that $(r/d_k) < 1$. Then,

$$\sum_{n=0}^{\infty} \frac{1}{\rho_1} e_n r^n < \frac{k+1/\rho_1}{d_k} e_k 1/\rho_1 \left(\frac{r}{d_k} \right).$$

Since the left hand side of (3.7) is independent of k, letting $k \to \infty$, we get

$$\sum_{n=0}^{\infty} \frac{1}{\rho_1} r^n < 1.$$

Thus

$$\sum_{n=N(r)}^{\infty} \frac{1}{\rho_1} e_n r^n = o(1), \text{ as } r \to \infty.$$

Since, $r^{N(r)} = \exp(N(r) \log r) = \psi(r^{\rho_1})$, it now follows from (3.6)

$$|f(z)| < O(1) + \sum_{n=0}^{\infty} \frac{1}{\rho_1} e_n r^n + o(1)$$

$$< O(1) \psi(r^{\rho_1}).$$

Since $\rho_1 < \rho$ and ρ is the ψ-order of f, the above inequality contradicts the definition of ψ-order. Thus, equality must hold in (3.4). This proves the lemma.

PROOF OF THEOREM 2. Since D are univalent in Δ, from (2.2), we get for sufficiently large p and $2k < p+1 - n_p + 1$.

$$|a(n + k)|^{1/(n + k)} < (1 + o(1)) \left(\frac{\cdots d_1}{d_k \cdots d_1} \right) \frac{p}{p+1 - n_p + 1} \frac{1}{p!} \left(\begin{array}{c} n_p - 1 \\ n_p - 1 \\ \vdots \\ n_p - 1 \\ n_p - 1 + 1 \end{array} \right) d(1) \cdots d(2)$$

Further, we have
Using these inequalities, (2.5) and (3.8), it follows that, for sufficiently large p,

$$\left| a(n_{p+k}) \right| \leq \frac{1}{n_{p+k}} \frac{1}{p^{+1}}$$

Let,

$$M_p = \max \{ \log d(n_i - n_{i-1} + 1) : 2 \leq i \leq p \}.$$

Since $\log d(n)$ is the restriction of a slowly oscillating function on integers, by (3.1)

$$\log d(n_{p}) - \frac{\sum_{i=2}^{n_p} \log d(n_i - n_{i-1} + 1)}{n_p} \leq \frac{\sum_{i=2}^{n_p} \log d(n_i - n_{i-1} + 1)}{n_p} - \log d(n_{p+1}).$$

Consequently, for sufficiently large p,

$$\frac{(n_{p+k}) \log d(n_{p+k})}{-\log |a(n_{p+k})|} < \frac{\log d(n_{p+1})}{\log d(n_p) - \frac{n_{p+1}}{n_p} M_{p+1} \log 2}.$$

Again, from the definition of S.O. function $\log d(n_p) \sim \log d(n_{p+1})$ as $p \to \infty$.

Hence,

$$\rho_\psi < \frac{1}{1 - \limsup_{p \to \infty} \frac{M_p}{\log d(n_p)}}.$$

If M_p is bounded, there is nothing to prove. So, let $M_p = \infty$ as $p \to \infty$.

For $p > 2$, let,

$$A_p = \frac{\log d(n_p - n_{p-1} + 1)}{\log d(n_p)}$$

and

$$B_p = \frac{M_p}{\log d(n_p)}.$$

But as $M_p = \max \{ \log d(n_i - n_{i-1} + 1) : 2 \leq i \leq p \}$, for each $p > 2$, there is some
Let $p_n < p < q_p$ such that $M_p = \log d(n_p - n_{p-1})$. Hence

$$B_p < A_p.$$ Taking $q_p \to \infty$,

$$\limsup_{p \to \infty} B_p \leq \limsup_{p \to \infty} A_p.$$

Now (3.2) follows from (3.10).

COROLLARY. Suppose the conditions of Theorem 2 are satisfied. If as $p \to \infty$,

$$\log d(n_p - n_{p-1}) = o(\log d(n_p))$$

then,

$$\rho_{\psi}(f) < 1.$$

THEOREM 3. Let $0 < \rho < 1$. Let $\{n_p\}_{p=1}^\infty$ be a strictly increasing sequence of non-negative integers. Then, there is an entire function h of ψ-order ρ such that $D^n h$ is univalent in Δ if and only if $n = n_p$ for some p.

PROOF. Suppose $\rho > 0$ and $\{d(n_p)\}_{n=1}^\infty$ is an increasing sequence of positive numbers such that $\log d(n_p)$ is the restriction of a slowly oscillating function on integers and $d_1 = 1$. Let,

$$h_{j+1} = \begin{cases} \frac{1}{2^p d(n_p + 1) \ldots d(2) (j - n_p + 1)} & \text{if } j = n_p \\ 0 & \text{otherwise.} \end{cases}$$

Define, $h(z) = \sum_{j=0}^\infty h_j z^j$. Then, $h(z)$ is an entire function and

$$\rho_{\psi}(h) = \limsup_{k \to \infty} \frac{k \log d(k)}{-\log |h_k|}$$

$$= \limsup_{p \to \infty} \frac{(n+1) \log d(n+1)}{p \log 2 + \frac{1}{\rho} \log (d(n_p+1) \ldots d(2))} = \rho.$$

To show that $D^n h$ given by

$$D^n h(z) = \sum_{k=0}^\infty \frac{d(n_p + k + 1) \ldots d(2)}{d(n_p + k - n_p + 1) \ldots d(2)} h(n_p + k + 1) z^{n_p + k - n_p + 1}$$

is univalent in Δ, it is enough to prove that

$$\sum_{k=1}^\infty \frac{d(n_p + k + 1) \ldots d(2)}{d(n_p + k - n_p + 1) \ldots d(2)} |h(n_p + k + 1)|$$

$$< d(n_p + 1) \ldots d(2) |h(n_p + 1)|.$$
Since \(p < 1 \),

\[
\sum_{k=1}^{n} \frac{(n+k_p-1)\ldots d(2)}{d(n+k_p-n_p+1)\ldots d(2)} \left| h(n+k_p+1) \right|
\]

\[
< \frac{1}{2^p} \sum_{k=1}^{n} \frac{(n+k_p-1)\ldots d(2)}{d(n+k_p-n_p+1)\ldots d(2)} \left(1 - \frac{1}{\rho} \right)
\]

\[
< \frac{1}{2^p} \left(d(n+1)\ldots d(2) \right) \sum_{k=1}^{n} \frac{1}{2^k}
\]

\[
= d(n+1)\ldots d(2) \left| h(n+1) \right|
\]

As \(D_{n+1}h(0) = 0 \) unless \(n=n_p \) for some \(p \), only \(D_{n_p}^{n}h \) are univalent in \(\Delta \).

If \(p=0 \), then take \(h_{j+1}^{*} \) defined by

\[
h_{j+1}^{*} = \left\{ \begin{array}{ll}
\frac{1}{2^p d(n+1)\ldots d(2)} & \text{if } j=n_p \text{ for some } p, \\
0 & \text{otherwise.}
\end{array} \right.
\]

in place of \(h_{j+1} \) in the Taylor series of the function \(h(z) \).

REFERENCES

Submit your manuscripts at http://www.hindawi.com