LOCATION OF APPROXIMATIONS OF A MARKOFF THEOREM

K.C. PRASAD
Department of Mathematics
Ranchi University
Ranchi - 834008, India

M. LARI
Birsa Agriculture University

P. SINGH
S.S.M. College
Ranchi, India

(Received November 26, 1986)

ABSTRACT. Relative to the first two theorems of the well-known Markoff Chain (J.W.S. Cassels, "An introduction to diophantine approximation" approximations are well located. Literature is silent on the question of location of approximations in reference to the other theorems of the Chain. Here we settle it for the third theorem of the Chain.

KEY WORDS AND PHRASES. Continued fractions, rational approximation.

1980 AMS SUBJECT CLASSIFICATION CODE. 10F05

1. INTRODUCTION

Suppose \(\theta \) is an irrational number whose simple continued fraction expansion is \([a_0, a_1, a_2, \ldots, a_n, \ldots]\). Let \(a_n(\theta) \) denote

\[
[0, a_n, a_{n-1}, \ldots, a_1] + [a_{n+1}, a_{n+2}, \ldots]
\]

Markoff Chain (Cassels [1], Kokshma [2]) is the following chain of theorems about the sequence \(\{a_n(\theta)\} \) for \(n \geq 1 \):

\(T_1 \): For every irrational number \(\theta \),

\[
a_j(\theta) > \sqrt{5}
\]

(1.1)

for infinity of \(j \)'s and \(\sqrt{5} \) cannot be increased for \(\theta \sim [0, (1)^\bullet] \).

\(T_2 \): If \(\theta \not\in [0, (1)^\bullet] \), then

\[
a_j(\theta) > \sqrt{8}
\]

(1.2)

for infinity of \(j \)'s and \(\sqrt{8} \) cannot be increased for \(\theta \sim [0, (2)^\bullet] \).
T_3: If \(\theta \notin [0, (1)_n^k] \) or \([0, (2)_n^k] \) then
\[
a_j(\theta) > (\sqrt{221})/5
\]
for infinity of j's and \((\sqrt{221})/5\) cannot be increased for \(\theta \sim [0, (2,2,1,1)_n^k] \)

T_4: If \(\theta \notin [0, (1)_n^k] \) or \([0, (2)_n^k] \) or \([0, (2,2,1,1)_n^k] \) then
\[
a_j(\theta) > (\sqrt{1517})/13
\]
for infinity and j's and \((\sqrt{1517})/13\) cannot be increased for
\[\theta \sim [0, (2,2,1,1,1)_n^k] \] etc.

It is know that the sequence of constants \(\sqrt{5}, \sqrt{8}, (\sqrt{221})/5, (\sqrt{1517})/13, \ldots\)
increases to 3. So the theorems say something non-trivial about \(\theta\)'s in which all
quotients are eventually 1 or 2 only.

As regards (1.1) and (1.2) we have an ad-hoc idea of the j's satisfying them. In
reference to T_1 we know that : one j must occur in \([n, n+1, n+2] \) \(\forall n \geq 1\). Relative to
T_2, we have a similar result : if \(a_{n+2} = 2\) then a j e \([n, n+1, n+2]\). These may be found
in Wright [3] or Prasad and Lari [4].

But the literature is surprisingly silent on such results in reference to T_3, T_4,
etc. In this article we announce one such result in reference to T_3 in the following
theorem:

2. MAIN RESULTS

THEOREM. \(a_{n+2} = 2\) and \(a_{n+3} = 1\)
then \(a_j(\theta) > (\sqrt{221})/5\) for at least one \(j \in [n, n+1, n+4]\)

REMARK. Our method gives a way to try for similar results on T_4, T_5, etc.

PROOF. Suppose \(\theta = [a_0, a_1, \ldots, a_n, \ldots] , a_{n+2} = 2\) and \(a_{n+3} = 1\)
If \(a_{n+1} \geq 3, a_j(\theta) > 3\) and we are through.
If \(a_{n+1} = 1, a_{n+1}(\theta) > [0,2] + [2,2] = 3\) and we are through.
If \(a_{n+1} = 2, a_{n+4} \geq 2\) then \(a_{n+1}(\theta) > [0,3] + [2,1,1] = 3\) and we are through.
For the left out \(\theta\)'s: \(a_{n+1} = 2, a_{n+2} = 2\) and \(a_{n+3} = 1 = a_{n+4}\).

To deal with them, we put
\[
\alpha = [0, a_n, a_{n-1}, \ldots, a_1], \\
\beta = [0, a_{n+5}, a_{n+6}, \ldots], \\
t = (\sqrt{221})/5
\]
and argue over all possible values of \(\beta\). We note:
\[
'\alpha_{n+4}(\theta) > t' \iff '\alpha[5 - (5t - 3)\beta] > [(2t - 7)\beta - 12]' \\
\]
So \(\beta \leq 12/(2t - 7) \Rightarrow \alpha_{n+4}(\theta) > t\)
We next check:

\[a_n(\theta) > t \iff \alpha > f_1(\beta) = \frac{(5t-12) + (3t-7)\beta}{(5 + 3\beta)} \]

\[a_{n+1}(\theta) > t \iff \alpha < f_2(\beta) = \frac{(12-4t) + (7-2t)\beta}{(2t-5) - (3-t)\beta} \]

and \(f_2(\beta) - f_1(\beta) = A_1 (\beta + \frac{251 - 5t}{146}) \quad (\beta = \frac{5t - 9}{14}) \)

where \(A_1 = t(10-3t)(5+3\beta)^{-1} \left\{ (2t-5) - (3-t)\beta \right\}^{-1} \): (> 0).

So \(\beta > \frac{5t-9}{14} \)

\[\implies f_2(\beta) > f_1(\beta) \]

\[\implies \alpha > f_1(\beta) \text{ or } \alpha < f_2(\beta) \]

\[\iff \alpha_n(\theta) > t \text{ or } \alpha_{n+1}(\theta) > t. \]

Hence we confine attention to \(\frac{12}{12t-7} < \beta < \frac{5t-9}{14} \).

In this case \(a_{n+4}(\theta) > t \iff \alpha > f_3(\beta) = \frac{(12t-7)\beta - 12}{5 - (5t-3)\beta} \)

Also \(f_3(\beta) - f_2(\beta) = A_2 (\beta + \frac{5t+19}{14}) \quad (\beta = \frac{5t-9}{14}) \)

where \(A_2 = 2t(t-1)(5 - (5t-3)\beta)^{-1} \cdot (2t-5) - (3-t)\beta \): (>0)

So if \(\frac{12}{12t-7} < \beta < \frac{5t-9}{14} \) then \(f_3(\beta) < f_2(\beta) \)

which implies \(\alpha < f_2(\beta) \text{ or } \alpha > f_3(\beta) \); equivalently

\[a_{n+1}(\theta) > t \text{ or } a_{n+4}(\theta) > t \text{ and we are through.} \]

Finally \(\beta = \frac{5t-9}{14} \)

\[\implies f_1(\beta) = f_2(\beta) = f_3(\beta) = \frac{5t-9}{10} \quad \text{(an irrational number)} \]

\[\implies \alpha > f_1(\beta) \text{ or } \alpha < f_2(\beta), \quad (\alpha \text{ is rational}) \]

\[\implies a_n(\theta) > t \text{ or } a_{n+1}(\theta) > t. \]

This completes the proof of the theorem.
REFERENCES

Submit your manuscripts at http://www.hindawi.com