ON CERTAIN REAL HYPERSURFACES OF QUATERNIONIC PROJECTIVE SPACE

JUAN DE DIOS PEREZ
and
FLORENTINO G. SANTOS

Departamento de Geometria y Topologia
Facultad de Ciencias. Universidad de Granada
18071-GRANADA. SPAIN

(Received April 25, 1990)

ABSTRACT. We classify certain real hypersurfaces of a quaternionic projective space satisfying the condition \(\sigma(R(X,Y)SZ) = 0 \).

KEY WORDS AND PHRASES: Quaternionic projective space, real hypersurface.

1. INTRODUCTION.

Let \(M \) be a connected real hypersurface of a quaternionic projective space \(QP^n, n \geq 2 \), with metric \(g \) of constant quaternionic sectional curvature \(4 \). Let \(\xi \) be the unit local normal vector field on \(M \) and \(\{\psi_1, \psi_2, \psi_3\} \) a local basis of the quaternionic structure of \(QP^n \), (See [1]). Then \(U_i = \psi_i \xi, i=1,2,3 \) are tangent to \(M \). It is known, [3], that the unique Einstein real hypersurfaces of \(QP^n \) are the open subsets of geodesic hyperspheres of \(QP^n \) of radius \(r \) such that \(\cot^2 r = 1/(2n) \). This paper is devoted to study real hypersurfaces \(M \) of \(QP^n \) satisfying the following condition

\[R(X,Y)SZ + R(Y,Z)SX + R(Z,X)SY = 0 \]

(1.1)

for any \(X,Y,Z \) tangent to \(M \), where \(R \) denotes the curvature tensor and \(S \) the Ricci tensor of \(M \). Concretely we prove the following:

THEOREM 1. Let \(M \) be a real hypersurface of \(QP^n, n \geq 2 \), satisfying Condition (1.1) and such that \(U_i, i=1,2,3 \), are principal. Then \(M \) is an open subset of a geodesic hypersphere of \(QP^n \) of radius \(r, 0 < r < \pi/2 \), such that \(\cot^2 r = 1/(2n) \).

Clearly condition (1.1) is weaker than \(R.S=0 \). Thus we also obtain

COROLLARY 2. The unique real hypersurfaces of \(QP^n, n \geq 2 \), satisfying \(R.S=0 \) and such that \(U_i, i=1,2,3 \), are principal are open subsets of geodesic hyperspheres of radius \(r, 0 < r < \pi/2 \), such that \(\cot^2 r = 1/(2n) \).

COROLLARY 3. A real hypersurface of \(QP^n, n \geq 2 \), with \(U_i, i=1,2,3 \), principal cannot satisfy the condition \(R.R=0 \).

Where for any \(X,Y \) tangent to \(M \), \(R(X,Y)T = \nabla_X \nabla_Y T - \nabla_Y \nabla_X T - \nabla_{[X,Y]} T \) for any tensor field \(T \) on \(M \), (see, for example, [5]).

2. PRELIMINARIES

Let \(X \) be a vector field tangent to \(M \). We write \(\psi_iX = \phi_iX + f_i(X)\xi, i=1,2,3 \), where \(\phi_iX \) denotes the tangential component of \(\psi_iX \) and \(f_i(X) = g(X, U_i) \). From this, [4], we have

\[g(\phi_iX, Y) + g(X, \phi_iY) = 0, \quad \phi_iU_i = 0, \quad \phi_jU_k = -\phi_kU_j = U_i \]

(2.1)
for any \(X \) and \(Y \) tangent to \(M \), \(i=1,2,3 \) and \((j,k,t) \) being a cyclic permutation of \((1,2,3)\).

From the expression of the curvature tensor of \(QP^n \), [4], the equations of Gauss and Codazzi are given respectively by

\[
R(X,Y)Z = g(Y,Z)X - g(X,Z)Y + \sum_{i=1}^{3} \{ g(\varphi_i Y, Z) \varphi_i X - g(\varphi_i X, Z) \varphi_i Y + 2g(\varphi_i X, Y) \varphi_i Z \} + g(AX, Z)AX - g(AX, Z)AY
\]

and

\[
(\nabla_X A)Y - (\nabla_Y A)X = \sum_{i=1}^{3} \{ f_i(X) \varphi_i Y - f_i(Y) \varphi_i X + 2g(X, \varphi_i Y)U_i \}
\]

(2.2)

(2.3)

for any \(X, Y, Z \) tangent to \(M \), where \(A \) denotes the Weingarten endomorphism of \(M \). The Ricci tensor of \(M \) has the following expression

\[
SX = (4n + 7)X - 3 \sum_{i=1}^{3} \{ f_i(X)U_i + hA X - A^2 X \}
\]

(2.4)

for any \(X \) tangent to \(M \), \(h \) being the trace of \(A \).

If \(U_i, i=1,2,3 \), are principal and have the same principal curvature \(\alpha_i \), this is constant, [4], and from (2.3) it is easy to see that

\[
2A\varphi AX = \alpha_i(A\varphi_i + \varphi_i A)X + 2\varphi_i X + 2f_i(X)U_j - 2f_j(X)U_k
\]

(2.5)

for any \(X \) tangent to \(M \), where \((i,j,k) \) is a cyclic permutation of \((1,2,3)\).

3. PROOF OF THEOREM 1.

Let \(Z \) be a tangent field to \(M \), orthogonal to \(U_i, i=1,2,3 \), and principal with principal curvature \(\lambda \). Then, from Condition (1.1) and (2.4) we have

\[
(4n + 7 + hA \lambda - \lambda^2)R(U_1, U_2)Z + (4n + 4 + h\alpha_1 - \alpha_1^2)R(U_2, Z)U_1 + (4n + 4 + h\alpha_2 - \alpha_2^2)R(Z, U_1)U_2 = 0
\]

(3.1)

where \(\alpha_i \) is the principal curvature of \(U_i, i=1,2,3 \).

From (3.1) and the identity of Bianchi we obtain

\[
(3 + h\lambda - \lambda^2)R(U_1, U_2)Z + (\alpha_1 - \alpha_1^2)R(U_2, Z)U_1 + (\alpha_2 - \alpha_2^2)R(Z, U_1)U_2 = 0
\]

(3.2)

that is,

\[
(3 + h\lambda - \lambda^2 - h\alpha_1 + \alpha_1^2)R(U_1, U_2)Z + (h\alpha_2 - \alpha_2^2 - h\alpha_1 + \alpha_1^2)R(Z, U_1)U_2 = 0
\]

(3.3)

From (2.2), (3.3) gives \(h\alpha_2 - \alpha_2^2 - h\alpha_1 + \alpha_1^2 = 2(3 + h\lambda - \lambda^2 - h\alpha_1 + \alpha_1^2) \). Changing \((U_1, U_2) \) in (3.1) by \((U_2, U_3) \) or \((U_3, U_1) \), respectively, we obtain

\[
h\alpha_i - \alpha_i^2 + h\alpha_j - \alpha_j^2 = 6 + 2h\lambda - 2\lambda^2, i \neq i, j = 1, 2, 3
\]

(3.4)

From (3.4) we get

\[
h(\alpha_i - \alpha_j) = \alpha_i^2 - \alpha_j^2
\]

(3.5)

thus either \(\alpha_i = \alpha_j \) or \(\alpha_i + \alpha_j = h \).

Let us suppose that \(\alpha_1 \neq \alpha_2 = \alpha_3 \). Then \(\alpha_1 + \alpha_2 = h \). Thus \(\alpha_i, i=1,2,3 \), must satisfy the equation \(\alpha^2 - h\alpha + \alpha_1 \alpha_2 = 0 \). Then we have \(hA - A^2 U_i = \alpha_i \alpha_2 U_i, i=1,2,3 \), and from (2.4)

\[
SU_i = (4n + 4 + \alpha_1 \alpha_2)U_i
\]

(3.6)
From (3.4) we also have $h(a_1+α_2)-α_1^2-α_2^2 = 6 + 2hα - 2λ^2$, but $h = α_1 + α_2$. Thus $α_1α_2 = 3 + hλ - λ^2$. This means that for any Z orthogonal to U_i, $i=1,2,3$, $(hA-A^2)Z = (α_1α_2 - 3)Z$, and from (2.4),

$$SZ = (4n + 4 + α_1α_2)Z \tag{3.7}$$

From (3.6) and (3.7), M must be Einstein. But this is a contradiction (see [3]). Thus $α_i = α_j = α$, $i \neq j$. Then $α$ is constant and from (3.4) we have

$$3 + h(λ - α) - λ^2 + α^2 = 0 \tag{3.8}$$

But from (2.5), $α_i Z$ is also principal and its principal curvature is $μ = (λα + 2)/(2λ - α)$. Thus we also get

$$3 + h(μ - α) - μ^2 + α^2 = 0 \tag{3.9}$$

Then from (3.8) and (3.9) we obtain that either $λ = μ$ or $λ + μ = h$. If $λ = μ$, $λ$ must satisfy the equation $λ^2 - λα - 1 = 0$. If $λ + μ = h$, $λ$ must satisfy the equation $αλ^2 - 2(α^2 + 4)λ + α^3 + 5α = 0$. In both cases all the principal curvatures are constant. Thus, [3], M must be an open subset of either a geodesic hypersphere or of a tube of radius r, $0 < r < π/2$ over QP^k, $0 < k < n-1$. It is easy now to see that the only ones satisfying (3.8) are open subsets of geodesic hyperspheres of radius r, $0 < r < π/2$, such that $\cot^2 r = 1/(2n)$, (see [3]). This concludes the proof.

It is also easy to see that these real hypersurfaces cannot satisfy the condition $R.R=0$, and then Corollary 3 is proved because $R.R=0$ implies $R.S=0$.

ACKNOWLEDGEMENT: Research partially supported by GIST Grant PS 87-0115-C03-02

REFERENCES
