FACTORIZATION OF k-QUASIHYPONORMAL OPERATORS

S.C. ARORA
Department of Mathematics
University of Delhi
Delhi - 110007
India

and

J.K. THUKRAL
Department of Mathematics
S.R.C.C.
University of Delhi
Delhi - 110007
India

(Received January 1, 1987 and in revised form March 17, 1989)

ABSTRACT. Let A be the class of all operators T on a Hilbert space H such that
\(R(T^{k+1}) \subseteq R(T^{k+1}) \), for a positive integer k. It has been shown that if \(T \in A \), there exists a unique operator \(C_T \) on H such that

(i) \(T^{k+1} = T^{k+1}C_T \);

(ii) \(\| C_T \| = \inf \{ \mu : \mu > 0 \text{ and } (T^{k+1}T^{k+1})^* < \mu (T^{k+1}T^{k+1}) \} \);

(iii) \(N(C_T) = N(T^{k+1}) \) and

(iv) \(R(C_T) \subseteq R(T^{k+1}) \).

The main objective of this paper is to characterize k-quotishyponormal; normal, and self-adjoint operators \(T \) in A in terms of \(C_T \). Throughout the paper, unless stated otherwise, H will denote a complex Hilbert space and T an operator on H, i.e., a bounded linear transformation from H into H itself. For an operator T, we write \(R(T) \) and \(N(T) \) to denote the range space and the null space of T.

KEY WORDS AND PHRASES. Self-adjoint, normal, unitary, quasinormal, hyponormal, quasi hyponormal, k-quasi hyponormal, isometry, partial isometry, null space, range space and the projection.

1980 AMS SUBJECT CLASSIFICATION CODES. 47B20; 47B15.

1. INTRODUCTION

T is said to be quasinormal if \(T(T^*) = (T^*)T \), hyponormal if \(T^*T \geq TT^* \) or equivalently \(\| T^*x \| < \| Tx \| \) for each \(x \) in H, k-quasi hyponormal (Campbell and Gupta
[1]) for a positive integer k if $T^k(T^*T - T_*T)^{k/2} > 0$ or equivalently
\[||T^kTx|| < ||T^{k+1}x|| \] for each x in H.

The purpose of this paper is to consider the class A of those operators T such that $R(T^k*) \subseteq R(T^{k+1}*)$ for a positive integer k. More precisely, our aim is to identify those operators T in A which are k-quasihyponormal, normal and self-adjoint. The motivation is due to Embry [2] who considered the class of operators T satisfying $R(T) \subseteq R(T^*)$ and Patel [5] who discussed the class of operators T satisfying $R(T*T) \subseteq R(T^2)$. If $T \in A$, then by Douglas' theorem [3, Theorem 1] there exists a unique operator C_T such that

(i) $T^kT = T^{k+1}C_T$;

(ii) $||C_T||^2 = \inf \{ \mu > 0 \text{ and } (T^kT)(T^kT)^* \leq \mu T^{k+1}T^{k+1} \}$;

(iii) $N(C_T) = N(T^kT)$; and

(iv) $R(C_T) \subseteq R(T^{k+1})$.

2. MAIN RESULTS.

By Douglas' theorem [3, Theorem 1], the class A contains all k-quasihyponormal operators.

Theorem 2.1. An operator T in A is k-quasihyponormal if and only if $||C_T|| < 1$.

Proof. If $||C_T|| < 1$, $||T^kT^kx|| = ||C_T T^{k+1}x|| < ||T^{k+1}x||$ for all x in H and hence T is k-quasihyponormal.

Conversely, assume that T is k-quasihyponormal. Since

$||C_T T^{k+1}x|| = ||T^kT^kx|| < ||T^{k+1}x||$ for all x in H, $||C_T^*x|| < ||y||$ for all y in $R(T^{k+1})$. Also since $R(C_T) \subseteq R(T^{k+1})$,

\[\frac{1}{||C_T||} = \frac{1}{||C_T^*||} \]

i.e. $R(T^{k+1}) \subseteq N(C_T)$, we have $C_T^*x = 0$ for all x in $R(T^{k+1})$. Thus for each x in H, $||C_T^*x|| < ||x||$ and consequently $||C_T|| = ||C_T^*|| < 1$.

To prove our next result, we need the following lemma.

Lemma 2.1. Let T be a quasinormal operator. Then for any positive integer k

(a) $T^kT^k = T^{k-1}T^kT$;

(b) $||((T^kT)^{k/2}x)|| = ||T^kx||$ for all vectors x in H;

(c) $N(T^kT) \subseteq N(T^k)$.

Proof. (a) We prove it by induction on k. For $k = 1$, trivial. For $k = 2$, again it holds since T is quasinormal. Now assume that the result is true for any positive integer $m > 2$. Then $T^mT^{m+1} = (T^mT)^T = (T^mT^mT)T = T^{m-1}TT^mT = T^mT^mT^mT$. Hence by induction the result follows. (b) It is an immediate consequence of the fact that if T is quasinormal, then $(T^kT)^k = T^kT^k$ for any positive integer k. (c)
Let $x \in N(T^* T)$. Then $T^* T x = 0$, i.e., $T^* T T^* T - I x = 0$ by (a). Thus $T^* T - I x \in N(T^* T) = N(T)$. But $N(T) \subseteq N(T^* T)$ since T is quasinormal. Therefore $T^* T - I x = 0$, i.e., $x \in N(T^* T)$.

By using the lemma we obtain the following

THEOREM 2.2. Let $T \in A$ be a quasinormal operator. Then \mathcal{C}_T is a quasinormal partial isometry with $R(\mathcal{C}_T) = R(T^* T)$.

PROOF. We have $\| (T^* T)^{-1} T x \| = \| T^* T x \| = \| T^* T T^* T x \| = 1$ for any $x \in H$. Thus \mathcal{C}_T is an isometry on $R(T^* T)$. But $R(T^* T) = \mathcal{N}(\mathcal{C}_T)$. Therefore \mathcal{C}_T is a partial isometry. Further, since the initial space of a partial isometry S equals the set of all those vectors x satisfying $\| S x \| = \| x \|$ [4, p. 63] and since \mathcal{C}_T is an isometry on $R(T^* T)$, therefore $R(T^* T) \subseteq N(\mathcal{C}_T)$, the initial space of \mathcal{C}_T. Hence $R(T^* T) = N(\mathcal{C}_T)$.

We now prove that \mathcal{C}_T is quasinormal. By making use of Lemma 2.1 again, we see that $N(\mathcal{C}_T) = N(T^* T) \subseteq N(T^* T) \subseteq N(T^* T^* T) = N(\mathcal{C}_T)$ since $R(\mathcal{C}_T) = R(T^* T)$. From this it follows that $N(\mathcal{C}_T) \subseteq N(\mathcal{C}_T)$. Now, if $x \in N(T^* T)$, then $T^* T x = 0$, i.e., $T x \in N(T^* T)$. That means $T^* T x = 0$ or $x \in N(T^* T) = N(T)$. This completes the proof.

THEOREM 2.3. An operator T in A is normal if and only if \mathcal{C}_T is a normal partial isometry with $R(\mathcal{C}_T) = R(T)$.

PROOF. Let T be normal. Then by Theorem 2.2, \mathcal{C}_T is a partial isometry with $R(\mathcal{C}_T) = R(T^* T)$ and hence $R(\mathcal{C}_T) = R(T^* T)^{-1} = N(T^* T)^{-1} = R(T)$. Thus by Lemma 2.2, $N(\mathcal{C}_T) = N(T^* T) = N(T)$. Therefore $R(\mathcal{C}_T) = R(T^* T) = N(T^* T)^{-1} = N(T)^{-1} = N(C_T) = R(C_T)$. Since \mathcal{C}_T is the projection on $R(\mathcal{C}_T)$ and $\mathcal{C}_T \mathcal{C}_T$ is the projection on $R(\mathcal{C}_T)$, we conclude that $\mathcal{C}_T \mathcal{C}_T = \mathcal{C}_T \mathcal{C}_T$.

Assume on the other hand that \mathcal{C}_T is a normal partial isometry with $R(\mathcal{C}_T) = R(T)$. Since $R(\mathcal{C}_T) \subseteq R(T)$, we have $R(\mathcal{C}_T) = R(T)$
N(T) by Lemma 2.2. Thus \(\|T^*x\| = \|Tx\| \) for each \(x \in R(T^k) \). Further since \(C_T^* \) is a partial isometry on \(R(C_T) = R(T^k) \), we have \(\|T^{k+1}x\| = \|C_T^* T^{k+1}x\| = \|T^{k+1}x\| \) for each \(x \in H \). Thus \(\|T^*y\| = \|Ty\| \) for each \(y \in R(T^k) \). Hence \(\|T^*x\| = \|Tx\| \) for each \(x \in H \), i.e., \(T \) is normal.

COROLLARY 2.1. Let \(T \in A \). Then \(T \) is normal and one-to-one if and only if \(C_T \) is a unitary operator with \(R(C_T) = R(T) \).

PROOF. Suppose \(T \) is normal and one-to-one. Then by Theorem 2.3, \(C_T \) is a normal partial isometry with \(R(C_T) = R(T) \). Since \(N(C_T) = N(T) = \{0\} \), we have \(N(C_T) = H \) and thus \(C_T \) is an isometry and consequently \(C_T \) is a unitary operator.

Conversely, if \(C_T \) is a unitary operator with \(R(C_T) = R(T) \), \(T \) is normal by Theorem 2.3. Also by Lemma 2.2, \(N(T) = N(T^k) = N(C_T) = \{0\} \), therefore \(T \) is one-to-one.

The next corollary characterizes self-adjoint operators in \(A \).

COROLLARY 2.2. Let \(T \in A \). \(T \) is self-adjoint if and only if \(C_T \) is the projection on \(R(T) \).

PROOF. Suppose \(T \) is self-adjoint. Then by Theorem 2.3, \(R(C_T) = R(T) = R(T^k) \).

Since \(T^k = T \) and \(T \) is self-adjoint, we have \(T^{k+1} = T^{k+1} C_T \), i.e.,

\[
C_T^{-1} T^{k+1} = T^{k+1}
\]

This means \(C_T^{-1} = I \) on \(R(T^k) = R(T) \). Also \(C_T^* = 0 \) on \(R(T) \) as \(R(T) = R(C_T) \). Therefore \(C_T \) is the projection on \(R(T) \).

Assume now that \(C_T \) is the projection on \(R(T) \). Then \(C_T = R(T) \) and hence by Lemma 2.2, \(N(C_T) = N(T^k) = N(T) \). Also, as in the proof of Theorem 2.3, we have \(N(C_T) = N(C_T) \).

Therefore \(T^k x = Tx \) for all \(x \in R(T^k) \). Moreover \(T^k C_T = T^{k+1} \) implies \(T^k = C_T^{k+1} \) as \(C_T \) is self-adjoint. But \(C_T \) is the projection on \(R(T) = R(T^k) \), therefore \(C_T^{k+1} = T^{k+1} \), that means \(T^k y = Ty \) for all \(y \in R(T^k) \). Thus \(T^k x = Tx \) for all \(x \in H \) or \(T \) is self-adjoint.

ACKNOWLEDGEMENT. The author gratefully acknowledges the financial support by the U.G.C. India, vide Research Grant No. F-26-1(1629)/85(SR-IV). The authors are thankful to Professor B.S. Yadav for his kind guidance and encouragement during the preparation of this paper. Thanks are also due to the referee for suggesting an improvement over the original version of the paper.

REFERENCES

Submit your manuscripts at http://www.hindawi.com