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L. INTRODUCTION.

We are concerned with a class of nonlinear vector equations of the form
x' = Ax + f(x) (1.1
where the nonlinear term f(x) is quadratic of the form
XTCIX
f(x) = .
benx
The n x n matrices {C;) are symmetric with the orthogonality property
xTf(x) =0 (1.2)
for all x.
We are interested in investigating the conditions on the n x n matrix A and f(x) so

that the system is point-dissipative, i.e., there is a bounded region which every trajectory
of the system eventually enters and remains within.
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II. DEFINITIONS.

For each vector xT = (xq, Xy, ... x,), we define the matrix C(ex)

as follows:

n T
A+A
0w =3, «G--A4 @1

i=1
. n_.n n
The mapping xQy: R xR — R, where
xTCIy

Q=1 22)
xTCny
can be regarded as a commutative multiplication in R". Note that
f(x) = xQx
f(c;x) = ¢y xQeyx = c%xQx = c% f(x)
and the quadratic formula

3
f(cqu; +cquy +caug) = z cicjuiQuj 2.3)
i, j=1
is true for all vectors uy, u,, u3 and all scalars ¢y, c,, c3.

In addition to the standard vector addition and scalar multiplication in R, this
multiplication xQy gives the vector space R" an additional structure of a commutative but
generally non-associative algebra B. The algebra B is determined uniquely by the
symmetric n x n matrices (C;}). This algebra has been studied by many specially by
Markus [1], Gerber, [2], and Frayman [3].

Some algebraic properties of this algebra B will be used to investigate the
conditions for point-dissipativeness of the system (1.1). We are specially interested in
the concepts of nilpotent and idempotent elements of the algebra B. A nilpotent element
v # 0 satisfies f(v) = vQv = 0, while an idempotent element v # 0 satisfies f(v) = vQv = v.
It has been proved [3] that in any such algebra B (with or without the orthogonality
property xT(xQx) = O for all x) generated by any given n symmetric matrices { C;}, there
exists at least one of these elements.

In our case, because of the orthogonality property (1.2), there cannot exist an
idempotent element in the algebra B. For, if u # 0 is an idempotent, then
0 = uTf(u) = uTQu) = uTu = Iali2 0 gives us a contradiction. Hence, there must exist
at least one nilpotent element in the algebra B. Again by (2.3), a scalar multiple of a
nilpotent is also a nilpotent. Hence, the nonlinear quadratic term f(x) in (1.1) has at least
one 1-dimensional subspace of zeros.

As an example of system (1.1) with orthogonality property (1.2), we cite the
Lorenz system: x' = Ax + f(x) 2.4)
where
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0 0 -b

0
f(x) =| X2
xy

III. LEMMA 1. If there exists an « so that C(x) is positive definite, then the system
x’ = Ax + f(x) is point-dissipative.

-a a 0
A=l 1 -1 0L a>0,r>0,b>0

The condition on A and f(x) which guarantees the existence of such an « is the
topic of our main theorem.

PROOF OF LEMMA 1. Suppose that there exists a vector « such that the
matrix C(wx) is positive definite. To show that the system (1.1) is point-dissipative, we
need to exhibit a bounded region G so that the (positive) trajectory of each solution of
(1.1) eventually enters and remains in G. We construct a Lyapunov function of the form

V(x) = %(x- )T (x - x)
for which
\.' (x) = «T Ax - xTC(x) x

Since the quadratic term xTC(x)x dominates the linear term - « TAX, the set
[ ]
S={x 1 V{&)=20} 3.1)

is bounded. Hence we can choose 1 > 0, sufficiently large, so that the level set (sphere)

V(x) = 1 contains in its interior the bounded set S. We choose the interior of the sphere
V(x) = ry to be our bounded region G. Let Py be a point outside of G and ®(t, Py) be the
solution of (1.1) with ®(0,Py) = P,. Let V(x) =1, be the level set of V(x) passing
through Pj. Clearly r; >, Let H be the annular closed region formed by the two
concentric spheres V(x) = r; and V(x) = rj. Since the bounded set S lies inside the

sphere V(x) = rg, \./ (x) < 0 on H. Therefore, V(®(t, Py)) is a decreasing function of t on
H. Hence, the trajectory of @(t, Py)) must enter the sphere V(x) = r; and cannot go
outside of the sphereV(x) = r; at any time t > 0. Suppose that the trajectory of ®@(t, Pp)
cannot enter the region G. Then it must remain in H for all time t 2 0. It must have a limit
point P in H. By using standard proof we can show that \./ (P) = 0 which gives us a

contradiction as V (x) < 0 on H. Hence, the trajectory of ®@(t, Pgy) must eventually enter
the bounded region G and cannot go out of G by the decreasing property of V(®(t, Py))

and therefore must remain in G.

IV. THEOREM. For n = 2, 3, the system x’ = Ax + f(x) is point-dissipative if and only if
ulTAu<o0 for all nontrivial zeros u of f(x).

For n = 2, the theorem has already been proved by Bose and Reneke [1]. Hence
we will give the proof for n = 3. In order to prove the theorem, all we need to show is that
the condition uTAu < 0 for all nontrivial zeros of f(x) implies that there exists a vector «
such that the matrix C(«) is positive definite. Hence, by Lemma 1, the theorem will be
proved.
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We also need the following definitions and lemmas:

DEFINITION 1. Let Z be the set of all zeros of f(x). That is Z contains the zero
vector and all the nilpotents of the algebra B.

DEFINITION 2. S(u, v) is the 2-dimensional subspace of R3 generated by two
linearly independent vectors u and v.

DEFINITION 3. S(u) is the I-dimensional subspace of R’ generated by a
nontrivial vector u.

LEMMA 2. Ifuis a zero of f(x), then uQx is orthogonal to u for all x.
LEMMA 3. If u, v are two linearly independent zeros of f(x), then S(u, v) C Z if
and only if uQv = 0.

PROOF OF LEMMA 2. Suppose that u be a zero of f(x). Then by using the
quadratic formula (2.3) and the orthogonality relations (u + x)T fu+x) =0, (u-x7T f(u -
x) = 0, we can show that uT(uQx) = 0, for all x.

PROOF OF LEMMA 3. Let u and v be two linearly independent zeros of f(x).

Suppose that uQv = 0. Then f(cju + cyv) = c% uQu + 2cc, uQv + cg vQv = 0 implies that
cju +c,v is in Z for any two scalars ¢, and c,. Hence, S(u, v) € Z. Conversely, suppose

that S(u, v) € Z. Thenu + visin Z and
0 = f(u + v) = uQu + 2uQv + vQv = 2 uQv implies that uQv = 0.
Let u;, u,, u3 be a basis of R3, then for any vector x =d; u; +d, u; +d; u3,
xTC(e) x = T £(x) - xTAx = dT C(ex)d @1
where dT = (d; d,, d3) and the matrix é(ot) = ((cij)) with

¢ = T (Qu) - ulAu;,i,j=1,2,3,

C:: =C;

i = Sji
Hence, in order to show that the matrix C(x) is positive definite for some o, all we need

A
to show is that the matrix C(«) is positive definite for some .

PROOF OF THE THEOREM. That the condition "uTAu < 0 for all nontrivial u in
Z" is necessary follows from (4.1). Hence we need only to show that it is also sufficient.

The proof of the theorem depends on the nature of the set Z of all zeros of f(x).
We need to consider the following cases:

Case 1. (a)  Z contains 3 linearly independent vectors with three

2-dimensional subspace of zeros.

(b)  Z contains 3 linearly independent vectors with two
2-dimensional subspace of zeros.

(c)  Z contains 3 linearly independent vectors with one
2-dimensional subspace of zeros.

(d)  Z contains 3 linearly independent vectors with no
2-dimensional subspace of zeros.
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Case 2. (a)  Z contains 2 linearly independent vectors with one
2-dimensional subspace of zeros.
(b)  Z contains 2 linearly independent vectors with ng
2-dimensional subspace of zeros.

Case 3. Z contains only one linearly independent vector.

Case 1(a) cannot happen. For suppose that uj, u,, uz be three linearly
independent vector in Z so that Z = S(uy, uy) U S(uy, u3) U S(uy, u3). Then by lemma 3

3
uiQuj =0, foralli, j = 1, 2, 3. Hence, for any vector x = cju; + cyuy + c3us, f(x) = 2
i,j=1
cicjuiQuj = 0, implies that f(x) = 0, for all x.

Case 1(b) also cannot happen. For suppose that u;, u,, uz be three linearly
independent vectors in Z so that Z = S(u, u;) U S(u;, u3) U S(uj). Then by lemma 3,
u;,Qu; =0, fori=1,2,3, u;Quy=0, u;Quz = 0 but u;Qu; # 0. Now f(u; + uy +u3)=2u,Quj
and (u; + upy + uy) Tf(ul +u, + u3) = 0 implies that u'lr (u,Qu3) = 0. This implies by lemma
2 that u,Qug is orthogonal to each of the basis vector uy, u,, u3 and hence u,Qugy =0,
contradicting our hypothesis.

Case 1(c). Let uj, uy, uz be three linearly independent vectors in Z so that
Z= S(ul, UZ) U S(U3)‘ Here UiQUi = 0, i= 1, 2, 3, UlQU2 =0 but ulQu3 # 0, U2QU3 # 0.
By hypothesis of the theorem

2
T = T
(cqug +couy)” Alcqu;y +cpuy) = E cicju; Au;
i,j=1

T T ¢
) u, Ay LY Au, 1
=(c,, ¢ <0
r-2/ | ,T T c
u, Au, u, Au, 2
for all (cq, ¢p) # (0, 0). Thatis
-u'f Aul -u'lr Au2
T T is positive definite.
- Au2 -u, Au2

Again u;Qu; and u,Qujz must be linearly independent. For suppose that
¢1(u;Qu3) + c5(u,Qus) = 0, for some scalars ¢, and ¢,. Taking inner product respectively
with u; and u, and using lemma 2, we get

c2u’lr (uyQu3) =0
CIU; (ulQl13) =0.

Now u}. (1,Qu3) = 0 implies by lemma 2 that u,Quy is orthogonal to each of the basis
vector uy, Uy, uz and hence u,Qu; = O contradicting our hypothesis that u,Qusz # 0.
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Therefore u'{(u2Qu3) # 0, implying that ¢, = 0. Similarly ¢; = 0. Hence u;Quj and u,Qug
are linearly independent. We can choose a vector « such that

T (u,Quy) - u'f Auz=0

«T (u3Quy) - u; Auy =0.

A
For such a choice of «, the matrix C(x) becomes

T T
-y Au1 N Au2 0
e(u) =1 - uT Au, - ;Au2 0
T
0 0 - U, Au3

which is positive definite.

Case 1(d). Let uy, u,, ug be three linearly independent vectors in Z so that
Z = S(uy) U S(up) U S(uy).
Here uiQuj =0, ifi=jand uiQuj #0,if i #j. Asin case 1(c), we can show that u;Qu,,
u;Qug, uyQuy are linearly independent. Hence we can choose a vector o« such that

Cip = “T (u,Quz) - UT AUz =0
c13= oT (u;Quj) - u'lr Au3 =0
Cy3 = GT (UzQU3) - Ug AU3 =0.

A
For such a choice of «, the matrix C(x) becomes
T
h Au1 0 0

Cey=| O -vulAu, o
T
0 0 -u;Au,

which is positive definite.
Case 2(a). Letu;, uy be two linearly independent vectors in Z such that

Z = S(uy, uy). We can assume that u; and u, are two unit vectors orthogonal to each
other. Let uz be a unit vector such that uy, u,, uy form a orthonormal basis of R3. Here,

ulQul = \llQ\l2 = U2QL12 =0, U3QU3 20
Since u;Quy is orthogonal to u; and u3Quy is orthogonal to uy, we can write
u;Quy = tyug + tau3, u3Quy =pyu; +pyuy.

Using the orthogonality property (u; + us3) Tf(ul +u3) = 0, we can show that
P; = - 2t. Hence, u3Qug = - 2tyu; + pyuy, (ty, pp) # (0, 0). Similarly we can show that

u,Quj =-tyuy - % ppu3. Now, in this case t; = 0. For t; # 0 implies that

P, H P t
f| - u-=u,+u,| - : Lr2 2 . .
( 2;1 1t 2773 0. Since 2t1 u, t, u, +uyis notin Z, we geta
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.- 1 .
contradiction. Hence, u;Quj = tyuz, u;Qus = - 3 Paus, u3Qujy = - 2thu; + pyuy. Asin
case 1(c),

T T
- Uy Au1 -uy Au2

T T
- Au2 -u, Au2
is positive definite. Taking & = -% rt, u, +1p, u,, where r > 0, to be chosen suitably,

A
the matrix C() becomes
T T T
L Aul L Au2 L Au3
A T T T
Clx)=] -y Au2 -u, Au2 -u, Au3

T T 2,2 T
u Au3 u, Au3 r(ty + p2) -uy Au3

T T
u, Aul Lh Au2

+ & where O is a constant
- u}. Au2 - u; Au2

A 2 2
Here, det C(x) = r(t2 + p2)

(independent of r). Clearly we can choose r > 0, sufficiently large, to make r(tg + pg) - u'3r
Aug > 0 and det 6(«) > 0. In other words we can choose a vector « such that 6(«) is
positive definite.

Case 2(b). Let uy, u be two linearly independent unit vectors in Z so that
Z =S(u;) V S(uy). Let ug be a unit vector orthogonal to S(u;, u,). Then uy, u,, uy form a

basis of R3 with u} u; =0, u} uy = 0. Here, u;Quj # 0 and u3Qu; # 0. As in previous
cases we can show using lemma 2 and the orthogonality property of f(x) that

u;Quy =s5u3, 59 #0, u;Quz = -(tlu'lr Up)uy + tyu, + tyus,

u3Qusz =- (2t +q, uTuz)ul + qau,, and

N N 2

= —_—2 — 2 T 1 T, T

u, Quy=-(t, + T 2) u @+ T 7) (U U uy +5 {2t2u1q2[1_(ul u| |fu.
1- (u] “2) 1- (u1 u2)

q
Now in this case t, = 0 implies t; =0. For, ift, =0, thenf (72 u, -t U3J =0 implies that
t; =0. Hence t; # 0 implies that t, # 0.

In order to prove case 2(b), we also need the following two results:

s
(i) Ift; #0, thent; + —2—— =0
T 2
1- @l uy)

2
(i) If t, =0, then 2t, u'lr uy - q2[1 - (u;r uz) ) #0
To prove result (i), suppose that t; # 0. We need to show that the vectors u;Qu,, u;Qus,
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u,Qug are linearly dependent. Suppose that they are linearly independent.
Then u3Quj = ¢;(u;Quy) + c5(u;Qu3) + c3(u,Quy) for some (cy, ¢y, c3) # (0, 0, 0). Now
1 1 1 1
f(2 Couy +7 C3up - u3) = (5 €5c3 +¢1) (U Quy) = (5 €3 + ¢1) S5u3
N 1 Tel 1 1 .
Since (2 Couy +7 C3ly - u3) f(2c2ul +7C3up - u3) = 0, we have 5CC3+Cy = 0. This in
turn implies that f(';‘ Cyuy + % c3u, - u3) = 0 giving us a contradiction. Hence
¢1(u;Quy) + c5(u;Quy) + ¢3(u,Qu3) = 0, for some (cy, ¢,, c3) # (0, 0, 0). That is

S S
t + 2 t+——2‘———

T 1 2 1 2 [uTu)
Cyt U uy+ l-(“'{uz] [y +]ect+ 1_[u}'u2) 1%2)e3 U,

2
1 T
+[c‘s2 *ehty G {2t2 uf v, - g, (1- [ul uZ) )H uy=0
That is (¢, €y, €3) # (0, 0, 0) must be a solution of the linear system
2
T ht 2
&Y [ul u2) + 1- (u'{ u2) ;=0

2
1 T T -
< s2+c2t2+2 { 2t2u1 u,-q, [1_(\11 “2) )] c3—0

[

tlll']rll2 t1+ T 2 3
NEN )

172 — 1 2 T
Now s =t (uTu) (ul u2) -1
t,+——2—| (1 1-("1%
t ! T, (“1 “2]
1 1_(ul u2]

Since u; and u, are two linearly independent unit vectors, qu u,l < 1 and therefore

S
T 2 2
(ul uy)“-120. Iftl +

2 #0, then ¢, =c4 = 0. This in turn implies thatc; =0
T
1- (ul u2)

contradicting our hypothesis that (cy, ¢,, ¢3) # (0, 0, 0). Hencet; # 0 implies that

S
t +—2— =0.

2
- 172

To prove result (ii), suppose that t; = 0. If 2t2(u'{ uy) - qy(1 - (u'{ u2)2) =0, then

@2, + qz(u-lr uy)) (u'lr u,) = qy, uyQuy = syu3, 55 # 0, uQuy = tu,,
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U u; u

-q ) T
u3Quz = T—i u, +q,u, (assuming u}. u, # 0) and u)Qug = 2 {- u + [“1 “2) “2}
1- [ 1 2]

h u, + 2% u
and f u'f u, 2 (uT " 2 31 =0. Sinces,#0, this implies a contradiction.
1-1%1%

Therefore t; = 0 implies that 2t2(u}. uy) - qp(1 - (u'{ u2)2 # 0. In case uT u, =0, we can
show that g, # 0.

To prove case 2(b), we will consider the following two subcases:
(g) t;#0,and
(h) tl =0.

s
Consider the subcase (g) first. We have t; # 0, then by result (i) t; + —2 _ .o

T 2
1-|9 u2)

For this subcase u;Qu, = spus, sy #0, u;Quy = - (tlu'lr up) uy + tyuy + thus,
uQuy = {ty(u] up) - % qQp (1 - @] up)?) uz, u3Quy = - 2ty + gy u] vy) Uy + g0,
Taking o« = k;u; + kyu, + k3us the entries Cij of the matrix e(u) becomes,
cp=- u;r Auy, Cyy =- u;Auz
C12= o:TulQuz - u'eruz =$9k3 - u'fAuz
ci13= uTulQu3 - u’eru_,, =t;(1- (u'{ u2)2) ky + kg - u'eru3
cy3 = «Tu,Quy - u] Aug = (tyu] uy - % (1 - (] up? qp) ky - u] Aug
¢33 = «Tu3Quy - u] Aug = -2tk - (26u] up - Gz (1 - @] up)?) kz - uzAug

We can choose k3 so that ¢y = «Tu}' Qu, - u'lr Au, = 0. For this k3
Cy3= «TuzQu3 - u; Aujy = constant = & (say). After choosing k3, we can now choose k;
sothatcy3 = chulQu3 - u}‘ Aujz = 0. After choosing kj and k3 in this way, we now choose

ky=- '% t,r, where r > 0 to be chosen suitably. For such a choice of «, ¢33 = O(TU3QIJ3 - ug‘

A
Auy = t% r + a where a is a constant independent of r and the matrix C(x) becomes
T
-uy Aul 0 0
e(o() = 0 u}. Au, )
2
0 ) ty r+a

Clearly we can choose r > 0, sufficiently large to make é( ) positive definite. The
subcase (h) can be similarly disposed of, using the fact that t; = 0 implies

2‘2(“} uj) - qo(1 - (U}- u2)2) #0.



108 A.K. BOSE, A.S. COVER AND J.A. RENEKE

Case 3. Let u be a unit vector in Z so that Z = S(u). Let u, v, w be an orthonormal
basis of R3. By our assumption vQv # 0 and wQw # 0. Using lemma 2 and the

orthogonality property (1.2), we can write
uQv = s;v + S,w uQw =t v + tyw
vQv=-25;u+pw WwQw =-2tu+qv

1 1
vQw = -(t, + sy)u - 2PV-3qw

We will solve this case by considering three subcases:

t

Y

Subcase (b): D is orrank 1
Subcase (c): D is orrank 0

s
1 1
Subcase (a): D= (s ] is of rank 2
2

We also need the following two results (i) and (ii):
(i) ty =0 implies t; =0
(ii) s;=0impliessy =0
The result (i) can be proved as in case 2(b). For the result (ii), suppose that

s;=0ands, #0. Thenf (% pu - spv) = 0 implies a contradiction. Hence, s; =0
implies s, = 0.

Now consider the subcase (a). The matrix D is non-singular. This implies by (i)
and (ii) that s t, # 0, otherwise we would get a row of zeros. We will like to show that
the quadratic form xTDx #0 for any x # 0. Suppose that there exists x! = (x1, x9) # (0, 0)
such that x'Dx = 0. Since s;t, # 0, it follows that x;x, # 0.

t

1
N }is also non-singular and

]
1

Since D is non-singular, the transpose DT = [s
2 2

DTx Slxl +t1X2 ¢[O]
s,%; +,x, |70
Without loss of generality, suppose that syx; + tyx, # 0. Then for any scalar

X
¢ flcu + xyv + xow) = {2c(syx; + tX5) + X;(x1p - xzq))[- x—z v+ w)
1

Since syx; +tyx, # 0, we can choose the scalar c, to make f(cu + x;v + x,w) =0
contradicting the fact that x;x, # 0. Hence x'Dx # 0 for any x # 0. Therefore by continuity,

s, htS

xT Dx =xT¥ t+s, 2 x
7 "
is either positive definite or negative definite. In either case

1
sip-g 4+ s >0 (42)
(4.2) also implies that s, and t, are of the same sign.
Taking = kju + kyv + k3w, the entries ¢;; of the matrix e(cx) becomes

1 = «TuQu -uTAu=-uTAu
C1p= «TuQv -uTAv= s1ky + 89kg - uTAv
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cly= «Tqu -uTAw = t kg + thks - uTAw
Cypp = «TvQv - vTAv =25 1Ky +pks - vTAv
€33 = «TwQw - wlAw = - 2k, + gk, - wTAw

1 1
cp3 = «TvQw - vTAW = - (t) +59) k; -5 pky - 5 gk - VTAW
Since D is non-singular, we can choose k, and ky so that ¢, = ¢;3 = 0. Since
s; and t, are of the same sign, we can choose k; with Ik;| sufficiently large to make

C22 > O, C33 >0 and

C C.

c c = 4slt2-(tl +s2) k1+kld1 +d2>0

23 33

A
where d; and d, are constants. Hence for such a choice of k;, k,, ky the matrix C(x)

becomes
-uTAu 0 0
A
Cx)=| 0 ©cp oy
0 €3 Cy3

which is positive definite.

Now consider the subcase (b). Here rank D = 1. Without loss of generality we
can assume that (t;, ;) # (0, 0). This implies that t, # 0, by property (i). Let
(s1» Sp) = k(ty, tp). This implies thatk = t,/t;. For suppose that k # t;/t;. Then for any
scalar ¢, f(cu + tyv - t;w) = (2c(kt, - t)) + top + t;,q) (v + tHw)
Since kt, - t; # 0, we can choose the scalar ¢ so that f(cu + tyv - t;w) = 0 implying that
t; = t; = 0 contradicting our assumption. This also implies that typ + t;q # 0. Hence

2
3 / LY
D =
Y Y
With this D
g
uQv=—v+yw
P

uQw = ;v + tHw

2
vQv=—=u+pw
)
wQw = -2tu +qv

vQw = -2t;u - %pv - ';' qw

. 1
Since vQv # 0, we have (1}, p) # (0, 0). Taking & =7 1ytpu + Qv +1,pW, where r; >0,

A
1, > 0 to be chosen suitably, the entries Sij of the matrix C(x) becomes
T n4 T T
S =-u Au,cpp = (g +5p) -u Av,Cy3= r(tq + Hp) -u Aw
2

2 2 T - T
Cp =Tty +1p°-V Av, Cy3 =tilhr) -11pq - v Aw

C33= r2t§ + rlq2 -wiAwW
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C1 C

Now ¢y =- uwTAu > 0, =1, (-uTAu)tf +d,; (r), where d; (ry) is a quadratic

2 n

A
inr) and det C(x) =1, [(- uTAu) (tq + t2p)2r1 +d,] +dy (r)), where d, is a constant
and ds(ry) is a cubic polynomial in r;. Hence, if t; # 0, then we can choose r; >0 large
enough to make - (uTAu) (tq+ tzp)2 ) +d, > 0. After choosing such an r; >0, we can

cll C

choose r, > 0 sufficiently large to make > 0and det é(cx) >0. In

2 n»

A
otherwords we can choose o so that C(x) is positive definite.

If t; =0, then =(- uTAu)p2r1 + dy4, where d, is a constant and

2

det é(o() = rztg[(- uTAu)p2r1 + d4] + dg (rq), where ds(r)) is a quadratic in r;. As before
we can choose r; > 0 to make
(- uTAu) p’r; +dy >0

A
and after choosing such an r; > 0, we can choose r, > 0 to make det C() *>0. In other

A
words we can choose an « so that C(x) is positive definite.
Now consider the subcase (c). Here rank D = 0, which implies that s;=s,=t; t,=0.

Hence uQv =0, uQw =0, vQv = pw, p£ 0, wQw =qv, q # 0, vQw = - %pv - ‘% qw and

f(qv + pw) =0.
Since pq # 0, this implies a contradiction. Hence, subcase (c) cannot happen.
This completes the proof.

For an example, the Lorenz system (2.4)

x' = Ax + f(x), where
-a a 0 0
A=l 1 -1 0 [[a>0,r>0, b>0 andf (x) =| -X2
0 0 -b Xy

is point dissipative. The vectors u = (1, 0, 0), v=(0, 1, 0), w = (0, 0, 1) are three linearly
independent zeros of f(x) and Z = S(u) U S(v, w). The condition uwTAu<Oforallu€ Z
can easily be verified.
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