ON POINT - DISSIPATIVE SYSTEMS OF DIFFERENTIAL EQUATIONS WITH QUADRATIC NONLINEARITY

ANIL K. BOSE
ALAN S. COVER
and
JAMES A. RENEKE

Department of Mathematical Sciences
Clemson University
Clemson, SC 29634-1907

(Received April 25, 1990)

ABSTRACT. The system $x^{\prime}=A x+f(x)$ of nonlinear vector differential equations, where the nonlinear term $f(x)$ is quadratic with orthogonality property $x^{T} f(x)=0$ for all x, is point-dissipative if $u^{T} A u<0$ for all nontrivial zeros u of $f(x)$.

KEY WORDS AND PHRASES. Point-dissipative, quadratic nonlinearity, symmetric matrices, commutative but generally non-associative algebra.

AMS 1980 Mathematics Subject Classification Number 34.

I. INTRODUCTION.

We are concerned with a class of nonlinear vector equations of the form

$$
\begin{equation*}
\mathbf{x}^{\prime}=A \mathbf{x}+\mathrm{f}(\mathrm{x}) \tag{1.1}
\end{equation*}
$$

where the nonlinear term $f(x)$ is quadratic of the form

$$
f(x)=\left[\begin{array}{c}
x^{T} C_{1} x \\
\vdots \\
x^{T} \dot{C}_{n} x
\end{array}\right]
$$

The $n \times n$ matrices $\left\{C_{i}\right\}$ are symmetric with the orthogonality property

$$
\begin{equation*}
\mathbf{x}^{\mathrm{T}}(\mathrm{x})=0 \tag{1.2}
\end{equation*}
$$

for all \mathbf{x}.
We are interested in investigating the conditions on the $n \times n$ matrix A and $f(x)$ so that the system is point-dissipative, i.e., there is a bounded region which every trajectory of the system eventually enters and remains within.

II. DEFINITIONS.

For each vector $\alpha^{T}=\left(\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}\right)$, we define the matrix $C(\alpha)$
as follows:

$$
\begin{equation*}
C(\alpha)=\sum_{i=1}^{n} \alpha_{i} C_{i}-\frac{A+A^{T}}{2} \tag{2.1}
\end{equation*}
$$

The mapping $x Q y: R^{n} \times R^{n} \rightarrow R^{n}$, where

$$
x Q y=\left(\begin{array}{c}
x^{T} C_{1} y \tag{2.2}\\
\vdots \\
x^{T} C_{n} y
\end{array}\right)
$$

can be regarded as a commutative multiplication in R^{n}. Note that

$$
\begin{aligned}
& f(x)=x Q x \\
& f\left(c_{1} x\right)=c_{1} x Q c_{1} x=c_{1}^{2} x Q x=c_{1}^{2} f(x)
\end{aligned}
$$

and the quadratic formula

$$
\begin{equation*}
f\left(c_{1} u_{1}+c_{2} u_{2}+c_{3} u_{3}\right)=\sum_{i, j=1}^{3} c_{i} c_{j} u_{i} Q u_{j} \tag{2.3}
\end{equation*}
$$

is true for all vectors u_{1}, u_{2}, u_{3} and all scalars c_{1}, c_{2}, c_{3}.
In addition to the standard vector addition and scalar multiplication in \mathbf{R}^{n}, this multiplication xQy gives the vector space R^{n} an additional structure of a commutative but generally non-associative algebra B. The algebra B is determined uniquely by the symmetric $n \times n$ matrices $\left\{\mathrm{C}_{\mathrm{i}}\right.$). This algebra has been studied by many specially by Markus [1], Gerber, [2], and Frayman [3].

Some algebraic properties of this algebra B will be used to investigate the conditions for point-dissipativeness of the system (1.1). We are specially interested in the concepts of nilpotent and idempotent elements of the algebra B. A nilpotent element $v \neq 0$ satisfies $f(v)=v Q v=0$, while an idempotent element $v \neq 0$ satisfies $f(v)=v Q v=v$. It has been proved [3] that in any such algebra B (with or without the orthogonality property $x^{T}(x Q x)=0$ for all x) generated by any given n symmetric matrices $\left\{C_{i}\right\}$, there exists at least one of these elements.

In our case, because of the orthogonality property (1.2), there cannot exist an idempotent element in the algebra B. For, if $u \neq 0$ is an idempotent, then
$0=u^{T} f(u)=u^{T}(u Q u)=u^{T} u=\|u\|^{2} \neq 0$ gives us a contradiction. Hence, there must exist at least one nilpotent element in the algebra B. Again by (2.3), a scalar multiple of a nilpotent is also a nilpotent. Hence, the nonlinear quadratic term $\mathrm{f}(\mathrm{x})$ in (1.1) has at least one 1 -dimensional subspace of zeros.

As an example of system (1.1) with orthogonality property (1.2), we cite the
Lorenz system:

$$
\begin{equation*}
x^{\prime}=A x+f(x) \tag{2.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=\left(\begin{array}{rrr}
-a & a & 0 \\
r & -1 & 0 \\
0 & 0 & -b
\end{array}\right), \quad a>0, r>0, b>0 \\
& f(x)=\left(\begin{array}{c}
0 \\
-x z \\
x y
\end{array}\right)
\end{aligned}
$$

III. LEMMA 1. If there exists an α so that $C(\alpha)$ is positive definite, then the system $x^{\prime}=A x+f(x)$ is point-dissipative.

The condition on A and $f(x)$ which guarantees the existence of such an α is the topic of our main theorem.

PROOF OF LEMMA 1. Suppose that there exists a vector α such that the matrix $\mathrm{C}(\alpha)$ is positive definite. To show that the system (1.1) is point-dissipative, we need to exhibit a bounded region G so that the (positive) trajectory of each solution of (1.1) eventually enters and remains in G. We construct a Lyapunov function of the form

$$
V(x)=\frac{1}{2}(x-\alpha)^{T}(x-\alpha)
$$

for which

$$
\dot{\mathrm{V}}(\mathrm{x})=\alpha^{\mathrm{T}} \mathrm{Ax}-\mathrm{x}^{\mathrm{T}} \mathrm{C}(\alpha) \mathrm{x}
$$

Since the quadratic term $x^{T} C(\alpha) x$ dominates the linear term $-\alpha^{T} A x$, the set

$$
\begin{equation*}
S=\{x \mid \dot{\mathrm{V}}(x) \geq 0\} \tag{3.1}
\end{equation*}
$$

is bounded. Hence we can choose $\mathrm{r}_{0}>0$, sufficiently large, so that the level set (sphere) $V(x)=r_{0}$ contains in its interior the bounded set S. We choose the interior of the sphere $V(x)=r_{0}$ to be our bounded region G. Let P_{0} be a point outside of G and $\Phi\left(t, P_{0}\right)$ be the solution of (1.1) with $\Phi\left(0, P_{0}\right)=P_{0}$. Let $V(x)=r_{1}$ be the level set of $V(x)$ passing through P_{0}. Clearly $r_{1}>r_{0}$. Let H be the annular closed region formed by the two concentric spheres $V(x)=r_{1}$ and $V(x)=r_{0}$. Since the bounded set S lies inside the sphere $V(x)=r_{0}, \dot{V}(x)<0$ on H. Therefore, $V\left(\Phi\left(t, P_{0}\right)\right)$ is a decreasing function of t on H. Hence, the trajectory of $\Phi\left(t, P_{0}\right)$) must enter the sphere $V(x)=r_{1}$ and cannot go outside of the sphereV $(x)=r_{1}$ at any time $t>0$. Suppose that the trajectory of $\Phi\left(t, P_{0}\right)$ cannot enter the region G. Then it must remain in H for all time $t \geq 0$. It must have a limit point P in H. By using standard proof we can show that $\dot{\mathrm{V}}(\mathrm{P})=0$ which gives us a contradiction as $\dot{\mathrm{V}}(\mathrm{x})<0$ on H . Hence, the trajectory of $\Phi\left(\mathrm{t}, \mathrm{P}_{0}\right)$ must eventually enter the bounded region G and cannot go out of G by the decreasing property of $V\left(\Phi\left(t, P_{0}\right)\right)$ and therefore must remain in G.
IV. THEOREM. For $n=2,3$, the system $x^{\prime}=A x+f(x)$ is point-dissipative if and only if $u^{T} A u<0$ for all nontrivial zeros u of $f(x)$.

For $\mathrm{n}=2$, the theorem has already been proved by Bose and Reneke [1]. Hence we will give the proof for $n=3$. In order to prove the theorem, all we need to show is that the condition $u^{T} A u<0$ for all nontrivial zeros of $f(x)$ implies that there exists a vector α such that the matrix $\mathrm{C}(\alpha)$ is positive definite. Hence, by Lemma 1 , the theorem will be proved.

We also need the following definitions and lemmas:

DEFINITION 1. Let Z be the set of all zeros of $f(x)$. That is Z contains the zero vector and all the nilpotents of the algebra B.

DEFINITION 2. $S(u, v)$ is the 2 -dimensional subspace of R^{3} generated by two linearly independent vectors u and v.

DEFINITION 3. $S(u)$ is the 1 -dimensional subspace of R^{3} generated by a nontrivial vector u.

LEMMA 2. If u is a zero of $f(x)$, then $u Q x$ is orthogonal to u for all x.
LEMMA 3. If u, v are two linearly independent zeros of $f(x)$, then $S(u, v) \subset Z$ if and only if $u Q v=0$.

PROOF OF LEMMA 2. Suppose that u be a zero of $f(x)$. Then by using the quadratic formula (2.3) and the orthogonality relations $(u+x)^{T} f(u+x)=0,(u-x)^{T} f(u-$ $x)=0$, we can show that $u^{T}(u Q x)=0$, for all x.

PROOF OF LEMMA 3. Let u and v be two linearly independent zeros of $f(x)$. Suppose that $u Q v=0$. Then $f\left(c_{1} u+c_{2} v\right)=c_{1}^{2} u Q u+2 c_{1} c_{2} u Q v+c_{2}^{2} v Q v=0$ implies that $c_{1} u+c_{2} v$ is in Z for any two scalars c_{1} and c_{2}. Hence, $S(u, v) \subset Z$. Conversely, suppose that $S(u, v) \subset Z$. Then $u+v$ is in Z and

$$
0=f(u+v)=u Q u+2 u Q v+v Q v=2 u Q v \text { implies that } u Q v=0 \text {. }
$$

Let u_{1}, u_{2}, u_{3} be a basis of R^{3}, then for any vector $x=d_{1} u_{1}+d_{2} u_{2}+d_{3} u_{3}$,

$$
\begin{equation*}
x^{T} C(\alpha) x=\alpha^{T} f(x)-x^{T} A x=d^{T} \hat{C}(\alpha) d \tag{4.1}
\end{equation*}
$$

where $\mathrm{d}^{\mathrm{T}}=\left(\mathrm{d}_{1} \mathrm{~d}_{2}, \mathrm{~d}_{3}\right)$ and the matrix $\hat{\mathrm{C}}(\alpha)=\left(\left(\mathrm{c}_{\mathrm{ij}}\right)\right)$ with

$$
\begin{aligned}
& c_{i j}=\alpha^{T}\left(u_{i} Q u_{j}\right)-u_{i}^{T} A u_{j}, i, j=1,2,3, \\
& c_{i j}=c_{j i}
\end{aligned}
$$

Hence, in order to show that the matrix $\mathrm{C}(\alpha)$ is positive definite for some α, all we need to show is that the matrix $\hat{\mathrm{C}}(\alpha)$ is positive definite for some α.

PROOF OF THE THEOREM. That the condition " $u^{T} \mathrm{Au}<0$ for all nontrivial u in $Z^{\prime \prime}$ is necessary follows from (4.1). Hence we need only to show that it is also sufficient.

The proof of the theorem depends on the nature of the set Z of all zeros of $f(x)$. We need to consider the following cases:

Case 1. (a) Z contains 3 linearly independent vectors with three 2-dimensional subspace of zeros.
(b) Z contains 3 linearly independent vectors with two 2-dimensional subspace of zeros.
(c) Z contains 3 linearly independent vectors with one 2-dimensional subspace of zeros.
(d) Z contains 3 linearly independent vectors with no 2-dimensional subspace of zeros.

Case 2. (a) Z contains 2 linearly independent vectors with one 2-dimensional subspace of zeros.
(b) Z contains 2 linearly independent vectors with no 2-dimensional subspace of zeros.

Case 3. $\quad \mathrm{Z}$ contains only one linearly independent vector.
Case 1(a) cannot happen. For suppose that u_{1}, u_{2}, u_{3} be three linearly independent vector in Z so that $Z=S\left(u_{1}, u_{2}\right) \cup S\left(u_{1}, u_{3}\right) \cup S\left(u_{2}, u_{3}\right)$. Then by lemma 3
$u_{i} Q u_{j}=0$, for all $i, j=1,2,3$. Hence, for any vector $x=c_{1} u_{1}+c_{2} u_{2}+c_{3} u_{3}, f(x)=\sum_{i, j=1}^{3}$ $\mathrm{c}_{\mathrm{i}} \mathrm{c}_{\mathrm{j}} \mathrm{u}_{\mathrm{i}} \mathrm{Qu}_{\mathrm{j}}=0$, implies that $\mathrm{f}(\mathrm{x})=0$, for all x .

Case 1 (b) also cannot happen. For suppose that u_{1}, u_{2}, u_{3} be three linearly independent vectors in Z so that $Z=S\left(u_{1}, u_{2}\right) \cup S\left(u_{1}, u_{3}\right) \cup S\left(u_{3}\right)$. Then by lemma 3, $u_{i} Q u_{i}=0$, for $i=1,2,3, u_{1} Q u_{2}=0, u_{1} Q u_{3}=0$ but $u_{2} Q u_{3} \neq 0$. Now $f\left(u_{1}+u_{2}+u_{3}\right)=2 u_{2} Q u_{3}$ and $\left(u_{1}+u_{2}+u_{3}\right) T f\left(u_{1}+u_{2}+u_{3}\right)=0$ implies that $u_{1}^{T}\left(u_{2} Q u_{3}\right)=0$. This implies by lemma 2 that $u_{2} \mathrm{Qu}_{3}$ is orthogonal to each of the basis vector $\mathrm{u}_{1}, \mathrm{u}_{2}, u_{3}$ and hence $\mathrm{u}_{2} \mathrm{Qu}_{3}=0$, contradicting our hypothesis.

Case $1(\mathrm{c})$. Let $\mathrm{u}_{1}, \mathrm{u}_{2}$, u_{3} be three linearly independent vectors in Z so that $Z=S\left(u_{1}, u_{2}\right) \cup S\left(u_{3}\right)$. Here $u_{i} Q u_{i}=0, i=1,2,3, u_{1} Q u_{2}=0$ but $u_{1} Q u_{3} \neq 0, u_{2} Q u_{3} \neq 0$. By hypothesis of the theorem

$$
\begin{aligned}
& \left(c_{1} u_{1}+c_{2} u_{2}\right)^{T} A\left(c_{1} u_{1}+c_{2} u_{2}\right)=\sum^{2} c_{i} c_{i} u_{i}^{T} A u_{j} \\
& =\left(c_{1}, c_{2}\right)\left(\begin{array}{cc}
u_{1}^{T} A u_{1} & u_{1}^{T} A u_{2} \\
u_{1}^{T} A u_{2} & u_{2}^{T} A u_{2}
\end{array}\right)\binom{c_{1}}{c_{2}}<0
\end{aligned}
$$

for all $\left(c_{1}, c_{2}\right) \neq(0,0)$. That is

$$
\left(\begin{array}{cc}
-u_{1}^{T} A u_{1} & -u_{1}^{T} A u_{2} \\
-u_{1}^{T} A u_{2} & -u_{2}^{T} A u_{2}
\end{array}\right) \text { is positive definite. }
$$

Again $u_{1} Q u_{3}$ and $u_{2} Q u_{3}$ must be linearly independent. For suppose that $\mathrm{c}_{1}\left(\mathrm{u}_{1} \mathrm{Qu}_{3}\right)+\mathrm{c}_{2}\left(\mathrm{u}_{2} \mathrm{Qu}_{3}\right)=0$, for some scalars c_{1} and c_{2}. Taking inner product respectively with u_{1} and u_{2} and using lemma 2 , we get

$$
\begin{aligned}
& \mathrm{c}_{2} \mathrm{u}_{1}^{\mathrm{T}}\left(\mathrm{u}_{2} \mathrm{Qu}_{3}\right)=0 \\
& \mathrm{c}_{1} \mathrm{u}_{2}^{\mathrm{T}}\left(\mathrm{u}_{1} \mathrm{Qu}_{3}\right)=0 .
\end{aligned}
$$

Now $u_{1}^{T}\left(u_{2} Q u_{3}\right)=0$ implies by lemma 2 that $u_{2} Q u_{3}$ is orthogonal to each of the basis vector $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}$ and hence $\mathrm{u}_{2} \mathrm{Qu}_{3}=0$ contradicting our hypothesis that $\mathrm{u}_{2} \mathrm{Qu}_{3} \neq 0$.

Therefore $u_{1}^{T}\left(u_{2} Q u_{3}\right) \neq 0$, implying that $c_{2}=0$. Similarly $c_{1}=0$. Hence $u_{1} Q u_{3}$ and $u_{2} Q u_{3}$ are linearly independent. We can choose a vector α such that

$$
\begin{aligned}
& \alpha^{T}\left(u_{1} Q u_{3}\right)-u_{1}^{T} A u_{3}=0 \\
& \alpha^{T}\left(u_{2} Q u_{3}\right)-u_{2}^{T} A u_{3}=0
\end{aligned}
$$

For such a choice of α, the matrix $\hat{\mathrm{C}}(\alpha)$ becomes

$$
\hat{\mathrm{C}}(\alpha)=\left(\begin{array}{lcc}
-\mathrm{u}_{1}^{\mathrm{T}} A u_{1} & -\mathrm{u}_{1}^{\mathrm{T}} A u_{2} & 0 \\
-\mathrm{u}_{1}^{\mathrm{T}} A u_{2} & -\mathrm{u}_{2}^{\mathrm{T}} A u_{2} & 0 \\
0 & 0 & -u_{3}^{\mathrm{T}} A u_{3}
\end{array}\right)
$$

which is positive definite.
Case 1(d). Let $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}$ be three linearly independent vectors in Z so that $Z=S\left(u_{1}\right) \cup S\left(u_{2}\right) \cup S\left(u_{3}\right)$.
Here $u_{i} Q u_{j}=0$, if $i=j$ and $u i Q u_{j} \neq 0$, if $i \neq j$. As in case 1 (c), we can show that $u_{1} Q u_{2}$, $\mathrm{u}_{1} \mathrm{Qu}_{3}, \mathrm{u}_{2} \mathrm{Qu}_{3}$ are linearly independent. Hence we can choose a vector α such that

$$
\begin{aligned}
& c_{12}=\alpha^{T}\left(u_{1} Q u_{2}\right)-u_{1}^{T} A u_{2}=0 \\
& c_{13}=\alpha^{T}\left(u_{1} Q u_{3}\right)-u_{1}^{T} A u_{3}=0 \\
& c_{23}=\alpha^{T}\left(u_{2} Q u_{3}\right)-u_{2}^{T} A u_{3}=0
\end{aligned}
$$

For such a choice of α, the matrix $\hat{C}(\alpha)$ becomes
which is positive definite.
Case 2(a). Let u_{1}, u_{2} be two linearly independent vectors in Z such that $Z=S\left(u_{1}, u_{2}\right)$. We can assume that u_{1} and u_{2} are two unit vectors orthogonal to each other. Let u_{3} be a unit vector such that u_{1}, u_{2}, u_{3} form a orthonormal basis of R^{3}. Here,

$$
\mathrm{u}_{1} \mathrm{Qu}_{1}=\mathrm{u}_{1} \mathrm{Qu}_{2}=\mathrm{u}_{2} \mathrm{Qu}_{2}=0, \quad \mathrm{u}_{3} Q u_{3} \neq 0
$$

Since $u_{1} Q u_{3}$ is orthogonal to u_{1} and $u_{3} Q u_{3}$ is orthogonal to u_{3}, we can write

$$
u_{1} Q u_{3}=t_{1} u_{2}+t_{2} u_{3}, \quad u_{3} Q u_{3}=p_{1} u_{1}+p_{2} u_{2}
$$

Using the orthogonality property $\left(u_{1}+u_{3}\right) T f\left(u_{1}+u_{3}\right)=0$, we can show that $p_{1}=-2 t_{2}$. Hence, $u_{3} Q u_{3}=-2 t_{2} u_{1}+p_{2} u_{2},\left(t_{2}, p_{2}\right) \neq(0,0)$. Similarly we can show that $u_{2} Q u_{3}=-t_{1} u_{1}-\frac{1}{2} p_{2} u_{3}$. Now, in this case $t_{1}=0$. For $t_{1} \neq 0$ implies that $f\left(-\frac{p_{2}}{2 t_{1}} u_{1}-\frac{t_{2}}{t_{1}} u_{2}+u_{3}\right)=0$. Since $-\frac{p_{2}}{2 t_{1}} u_{1}-\frac{t_{2}}{t_{1}} u_{2}+u_{3}$ is not in Z, we get a
contradiction. Hence, $u_{1} Q u_{3}=t_{2} u_{3}, u_{2} Q u_{3}=-\frac{1}{2} p_{2} u_{3}, u_{3} Q u_{3}=-2 t_{2} u_{1}+p_{2} u_{2}$. As in case 1(c),

$$
\left(\begin{array}{ll}
-u_{1}^{\mathrm{T}} A u_{1} & -u_{1}^{\mathrm{T}} A u_{2} \\
-\mathrm{u}_{1}^{\mathrm{T}} A u_{2} & -u_{2}^{\mathrm{T}} A u_{2}
\end{array}\right)
$$

is positive definite. Taking $\alpha=-\frac{1}{2} \mathrm{rt}_{2} \mathrm{u}_{1}+\mathrm{rp}_{2} \mathrm{u}_{2}$, where $\mathrm{r}>0$, to be chosen suitably, the matrix $\hat{C}(\alpha)$ becomes

$$
\hat{C}(\alpha)=\left(\begin{array}{ccc}
-u_{1}^{T} A u_{1} & -u_{1}^{T} A u_{2} & -u_{1}^{T} A u_{3} \\
-u_{1}^{T} A u_{2} & -u_{2}^{T} A u_{2} & -u_{2}^{T} A u_{3} \\
-u_{1}^{\mathrm{T}} A u_{3} & -u_{2}^{\mathrm{T}} A u_{3} & r\left(t_{2}^{2}+p_{2}^{2}\right)-u_{3}^{T} A u_{3}
\end{array}\right)
$$

Here, $\operatorname{det} \hat{C}(\alpha)=r\left(t_{2}^{2}+p_{2}^{2}\right)\left|\begin{array}{ll}-u_{1}^{T} A u_{1} & -u_{1}^{T} A u_{2} \\ -u_{1}^{T} A u_{2} & -u_{2}^{T} A u_{2}\end{array}\right|+\delta$ where δ is a constant (independent of r). Clearly we can choose $r>0$, sufficiently large, to make $r\left(t_{2}^{2}+p_{2}^{2}\right)-u_{3}^{T}$ $\mathrm{Au}_{3}>0$ and det $\hat{\mathrm{C}}(\alpha)>0$. In other words we can choose a vector α such that $\hat{\mathrm{C}}(\alpha)$ is positive definite.

Case 2(b). Let u_{1}, u_{2} be two linearly independent unit vectors in Z so that $Z=S\left(u_{1}\right) \cup S\left(u_{2}\right)$. Let u_{3} be a unit vector orthogonal to $S\left(u_{1}, u_{2}\right)$. Then u_{1}, u_{2}, u_{3} form a basis of R^{3} with $u_{3}^{T} u_{1}=0, u_{3}^{T} u_{2}=0$. Here, $u_{1} Q u_{2} \neq 0$ and $u_{3} Q u_{3} \neq 0$. As in previous cases we can show using lemma 2 and the orthogonality property of $f(x)$ that

$$
\begin{gathered}
u_{1} Q u_{2}=s_{2} u_{3}, s_{2} \neq 0, u_{1} Q u_{3}=-\left(t_{1} u_{1}^{T} u_{2}\right) u_{1}+t_{1} u_{2}+t_{2} u_{3} \\
u_{3} Q u_{3}=-\left(2 t_{2}+q_{2} u_{1}^{T} u_{2}\right) u_{1}+q_{2} u_{2}, \text { and } \\
u_{2} Q u_{3}=-\left(t_{1}+\frac{s_{2}}{1-\left(u_{1}^{T} u_{2}\right)^{2}}\right) u_{1}+\left(t_{1}+\frac{s_{2}}{1-\left(u_{1}^{T} u_{2}\right)^{2}}\right)\left(u_{1}^{T} u_{2}\right) u_{2}+\frac{1}{2}\left\{2 t_{2} u_{1}^{T} q_{2}\left(1-\left(u_{1}^{T} u\right)^{2}\right)\right\} u_{:}
\end{gathered}
$$

Now in this case $t_{2}=0$ implies $t_{1}=0$. For, if $t_{2}=0$, then $f\left(\frac{q_{2}}{2} u_{1}-t_{1} u_{3}\right)=0$ implies that $t_{1}=0$. Hence $t_{1} \neq 0$ implies that $t_{2} \neq 0$.

In order to prove case 2(b), we also need the following two results:
(i) If $t_{1} \neq 0$, then $t_{1}+\frac{s_{2}}{1-\left(u_{1}^{T} u_{2}\right)^{2}}=0$
(ii) If $t_{1}=0$, then $2 t_{2} u_{1}^{T} u_{2}-q_{2}\left(1-\left(u_{1}^{T} u_{2}\right)^{2}\right) \neq 0$

To prove result (i), suppose that $t_{1} \neq 0$. We need to show that the vectors $u_{1} Q u_{2}, u_{1} Q u_{3}$,
$\mathrm{u}_{2} \mathrm{Qu}_{3}$ are linearly dependent. Suppose that they are linearly independent.
Then $\mathrm{u}_{3} \mathrm{Qu}_{3}=\mathrm{c}_{1}\left(\mathrm{u}_{1} \mathrm{Qu}_{2}\right)+\mathrm{c}_{2}\left(\mathrm{u}_{1} \mathrm{Qu}_{3}\right)+\mathrm{c}_{3}\left(\mathrm{u}_{2} \mathrm{Qu}_{3}\right)$ for some $\left(\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}\right) \neq(0,0,0)$. Now

$$
f\left(\frac{1}{2} c_{2} u_{1}+\frac{1}{2} c_{3} u_{2}-u_{3}\right)=\left(\frac{1}{2} c_{2} c_{3}+c_{1}\right)\left(u_{1} Q u_{2}\right)=\left(\frac{1}{2} c_{2} c_{3}+c_{1}\right) s_{2} u_{3}
$$

Since $\left(\frac{1}{2} c_{2} u_{1}+\frac{1}{2} c_{3} u_{2}-u_{3}\right)^{T} f\left(\frac{1}{2} c_{2} u_{1}+\frac{1}{2} c_{3} u_{2}-u_{3}\right)=0$, we have $\frac{1}{2} c_{2} c_{3}+c_{1}=0$. This in turn implies that $f\left(\frac{1}{2} c_{2} u_{1}+\frac{1}{2} c_{3} u_{2}-u_{3}\right)=0$ giving us a contradiction. Hence $c_{1}\left(u_{1} Q u_{2}\right)+c_{2}\left(u_{1} Q u_{3}\right)+c_{3}\left(u_{2} Q u_{3}\right)=0$, for some $\left(c_{1}, c_{2}, c_{3}\right) \neq(0,0,0)$. That is

$$
\begin{aligned}
-\left\{c_{2} t_{1} u_{1}^{T} u_{2}\right. & \left.+\left(t_{1}+\frac{s_{2}}{1-\left(u_{1}^{T} u_{2}\right)^{2}}\right) c_{3}\right\} u_{1}+\left\{c_{2} t_{1}+\left(t_{1}+\frac{s_{2}}{1-\left(u_{1}^{T} u_{2}\right)^{2}}\right)\left(u_{1}^{\mathrm{T}} u_{2}\right) c_{3}\right\} u_{2} \\
+ & {\left[c_{1} s_{2}+c_{2} t_{2}+\frac{1}{2} c_{3}\left\{2 t_{2} u_{1}^{\mathrm{T}} u_{2}-q_{2}\left(1-\left(u_{1}^{\mathrm{T}} u_{2}\right)^{2}\right)\right\}\right] u_{3}=0 }
\end{aligned}
$$

That is $\left(c_{1}, c_{2}, c_{3}\right) \neq(0,0,0)$ must be a solution of the linear system

$$
\begin{aligned}
& c_{2} t_{1}\left(u_{1}^{T} u_{2}\right)+\left(t_{1}+\frac{s_{2}}{1-\left(u_{1}^{T} u_{2}\right)^{2}}\right) c_{3}=0 \\
& c_{2} t_{1}+\left(t_{1}+\frac{s_{2}}{1-\left(u_{1}^{T} u_{2}\right)^{2}}\right)\left(u_{1}^{T} u_{2}\right) c_{3}=0 \\
& c_{1} s_{2}+c_{2} t_{2}+\frac{1}{2}\left\{2 t_{2} u_{1}^{T} u_{2}-q_{2}\left(1-\left(u_{1}^{T} u_{2}\right)^{2}\right)\right\} c_{3}=0
\end{aligned}
$$

Now $\left|\begin{array}{ll}t_{1} u_{1}^{T} u_{2} & t_{1}+\frac{s_{2}}{1-\left(u_{1}^{T} u_{2}\right)^{2}} \\ t_{1} & \left(\begin{array}{c}t_{1}+\frac{s_{2}}{1-\left(u_{1}^{T} u_{2}\right)^{2}}\end{array}\right)\left(u_{1}^{T} u_{2}\right)\end{array}\right|=t_{1}\left(\begin{array}{c}\left.t_{1}+\frac{s_{2}}{1-\left(u_{1}^{T} u_{2}\right)^{2}}\right)\left(\left(u_{1}^{T} u_{2}\right)^{2}-1\right) . ~\end{array}\right.$
Since u_{1} and u_{2} are two linearly independent unit vectors, $\left|u_{1}^{T} u_{2}\right|<1$ and therefore
$\left(u_{1}^{T} u_{2}\right)^{2}-1 \neq 0$. If $t_{1}+\frac{s_{2}}{1-\left(u_{1}^{T} u_{2}\right)^{2}} \neq 0$, then $c_{2}=c_{3}=0$. This in turn implies that $c_{1}=0$ contradicting our hypothesis that $\left(c_{1}, c_{2}, c_{3}\right) \neq(0,0,0)$. Hence $\mathrm{t}_{1} \neq 0$ implies that
$t_{1}+\frac{s_{2}}{1-\left(u_{1}^{T} u_{2}\right)^{2}}=0$.
To prove result (ii), suppose that $t_{1}=0$. If $2 t_{2}\left(u_{1}^{T} u_{2}\right)-q_{2}\left(1-\left(u_{1}^{T} u_{2}\right)^{2}\right)=0$, then $\left(2 t_{2}+q_{2}\left(u_{1}^{T} u_{2}\right)\right)\left(u_{1}^{T} u_{2}\right)=q_{2}, u_{1} Q u_{2}=s_{2} u_{3}, s_{2} \neq 0, u_{1} Q u_{3}=t_{2} u_{3}$,
$u_{3} Q u_{3}=\frac{-q_{2}}{u_{1}^{T} u_{2}} u_{1}+q_{2} u_{2}$ (assuming $u_{1}^{T} u_{2} \neq 0$) and $u_{2} Q u_{3}=\frac{s_{2}}{1-\left(u_{1}^{T} u_{2}\right)^{2}}\left\{-u_{1}+\left(u_{1}^{T} u_{2}\right) u_{2}\right\}$
and $f\left(-\frac{q_{2}}{u_{1}^{T} u_{2}} u_{2}+\frac{2 s_{2}}{1-\left(u_{1}^{T} u_{2}\right)^{2}} u_{3}\right)=0$. Since $s_{2} \neq 0$, this implies a contradiction.
Therefore $t_{1}=0$ implies that $2 t_{2}\left(u_{1}^{T} u_{2}\right)-q_{2}\left(1-\left(u_{1}^{T} u_{2}\right)^{2} \neq 0\right.$. In case $u_{1}^{T} u_{2}=0$, we can show that $\mathrm{q}_{2} \neq 0$.

To prove case 2(b), we will consider the following two subcases:
(g) $t_{1} \neq 0$, and
(h) $\quad t_{1}=0$.

Consider the subcase (g) first. We have $t_{1} \neq 0$, then by result (i) $t_{1}+\frac{s_{2}}{1-\left(u_{1}^{T} u_{2}\right)^{2}}=0$.
For this subcase $u_{1} Q u_{2}=s_{2} u_{3}, s_{2} \neq 0, u_{1} Q u_{3}=-\left(t_{1} u_{1}^{T} u_{2}\right) u_{1}+t_{1} u_{2}+t_{2} u_{3}$,
$u_{2} Q u_{3}=\left\{t_{2}\left(u_{1}^{T} u_{2}\right)-\frac{1}{2} q_{2}\left(1-\left(u_{1}^{T} u_{2}\right)^{2}\right)\right\} u_{3}, u_{3} Q u_{3}=-\left(2 t_{2}+q_{2} u_{1}^{T} u_{2}\right) u_{1}+q_{2} u_{2}$.
Taking $\alpha=k_{1} u_{1}+k_{2} u_{2}+k_{3} u_{3}$ the entries $c_{i j}$ of the matrix $\hat{C}(\alpha)$ becomes,
$c_{11}=-u_{1}^{T} A u_{1}, c_{22}=-u_{2}^{T} A u_{2}$
$c_{12}=\alpha^{T} u_{1} Q u_{2}-u_{1}^{T} A u_{2}=s_{2} k_{3}-u_{1}^{T} A u_{2}$
$c_{13}=\alpha^{T} u_{1} Q u_{3}-u_{1}^{T} A u_{3}=t_{1}\left(1-\left(u_{1}^{T} u_{2}\right)^{2}\right) k_{2}+t_{2} k_{3}-u_{1}^{T} A u_{3}$
$c_{23}=\alpha^{T} u_{2} Q u_{3}-u_{2}^{T} A u_{3}=\left\{t_{2} u_{1}^{T} u_{2}-\frac{1}{2}\left(1-\left(u_{1}^{T} u_{2}\right)^{2}\right) q_{2}\right\} k_{3}-u_{2}^{T} A u_{3}$
$c_{33}=\alpha^{T} u_{3} Q u_{3}-u_{3}^{T} A u_{3}=-2 t_{2} k_{1}-\left\{2 t_{2} u_{1}^{T} u_{2}-q_{2}\left(1-\left(u_{1}^{T} u_{2}\right)^{2}\right)\right\} k_{2}-u_{3}^{T} A u_{3}$
We can choose k_{3} so that $c_{12}=\alpha^{T} u_{1}^{T} Q u_{2}-u_{1}^{T} A u_{2}=0$. For this k_{3}
$\mathrm{c}_{23}=\alpha^{\mathrm{T}} \mathrm{u}_{2} \mathrm{Qu}_{3}-\mathrm{u}_{2}^{\mathrm{T}} \mathrm{Au}_{3}=$ constant $=\delta$ (say). After choosing k_{3}, we can now choose k_{2} so that $\mathrm{c}_{13}=\alpha^{T} \mathrm{u}_{1} \mathrm{Qu}_{3}-\mathrm{u}_{1}^{\mathrm{T}} A \mathrm{u}_{3}=0$. After choosing k_{2} and k_{3} in this way, we now choose $k_{1}=-\frac{1}{2} t_{2} r$, where $r>0$ to be chosen suitably. For such a choice of $\alpha, c_{33}=\alpha^{T} u_{3} Q u_{3}-u_{3}^{T}$ $A u_{3}=t_{2}^{2} r+a$ where a is a constant independent of r and the matrix $\hat{C}(\alpha)$ becomes

$$
\hat{\mathrm{C}}(\alpha)=\left(\begin{array}{ccc}
-\mathrm{u}_{1}^{\mathrm{T}} A u_{1} & 0 & 0 \\
0 & \mathrm{u}_{1}^{\mathrm{T}} A u_{2} & \delta \\
0 & & \delta \\
\mathrm{t}_{2}^{2} \mathrm{r}+\mathrm{a}
\end{array}\right)
$$

Clearly we can choose $r>0$, sufficiently large to make $\hat{\mathrm{C}}(\alpha)$ positive definite. The subcase (h) can be similarly disposed of, using the fact that $t_{1}=0$ implies
$2 \mathrm{t}_{2}\left(\mathrm{u}_{1}^{\mathrm{T}} \mathrm{u}_{2}\right)-\mathrm{q}_{2}\left(1-\left(\mathrm{u}_{1}^{\mathrm{T}} \mathrm{u}_{2}\right)^{2}\right) \neq 0$.

Case 3. Let u be a unit vector in Z so that $Z=S(u)$. Let u, v, w be an orthonormal basis of R^{3}. By our assumption $v Q v \neq 0$ and $w Q w \neq 0$. Using lemma 2 and the orthogonality property (1.2), we can write

$$
\begin{array}{ll}
u Q v=s_{1} v+s_{2} w & u Q w=t_{1} v+t_{2} w \\
v Q v=-2 s_{1} u+p w & w Q w=-2 t_{2} u+q v \\
v Q w=-\left(t_{1}+s_{2}\right) u-\frac{1}{2} p v-\frac{1}{2} q w
\end{array}
$$

We will solve this case by considering three subcases:
Subcase (a): $D=\left(\begin{array}{ll}s_{1} & t_{1} \\ s_{2} & t_{2}\end{array}\right)$ is of rank 2
Subcase (b): D is or rank 1
Subcase (c): D is or rank 0

We also need the following two results (i) and (ii):
(i) $\quad t_{2}=0$ implies $t_{1}=0$
(ii) $s_{1}=0$ implies $s_{2}=0$

The result (i) can be proved as in case 2(b). For the result (ii), suppose that $s_{1}=0$ and $s_{2} \neq 0$. Then $f\left(\frac{1}{2} p u-s_{2} v\right)=0$ implies a contradiction. Hence, $s_{1}=0$ implies $s_{2}=0$.

Now consider the subcase (a). The matrix D is non-singular. This implies by (i) and (ii) that $s_{1} t_{2} \neq 0$, otherwise we would get a row of zeros. We will like to show that the quadratic form $x^{T} D x \neq 0$ for any $x \neq 0$. Suppose that there exists $x^{T}=\left(x_{1}, x_{2}\right) \neq(0,0)$ such that $x^{T} D x=0$. Since $s_{1} t_{2} \neq 0$, it follows that $x_{1} x_{2} \neq 0$.

Since D is non-singular, the transpose $D^{T}=\left(\begin{array}{ll}s_{1} & t_{1} \\ s_{2} & t_{2}\end{array}\right)$ is also non-singular and

$$
D^{T} x=\binom{s_{1} x_{1}+t_{1} x_{2}}{s_{2} x_{1}+t_{2} x_{2}} \neq\binom{ 0}{0}
$$

Without loss of generality, suppose that $s_{2} x_{1}+t_{2} x_{2} \neq 0$. Then for any scalar
$c f\left(c u+x_{1} v+x_{2} w\right)=\left\{2 c\left(s_{2} x_{1}+t_{2} x_{2}\right)+x_{1}\left(x_{1} p-x_{2} q\right)\right\}\left(-\frac{x_{2}}{x_{1}} v+w\right)$
Since $s_{2} x_{1}+t_{2} x_{2} \neq 0$, we can choose the scalar c, to make $f\left(c u+x_{1} v+x_{2} w\right)=0$ contradicting the fact that $x_{1} x_{2} \neq 0$. Hence $x^{T} D x \neq 0$ for any $x \neq 0$. Therefore by continuity,

$$
x^{T} D x=x^{T}\left(\begin{array}{cc}
s_{1} & \frac{t_{1}+s_{2}}{2} \\
\frac{t_{1}+s_{2}}{2} & t_{2}
\end{array}\right) x
$$

is either positive definite or negative definite. In either case

$$
\begin{equation*}
s_{1} t_{2}-\frac{1}{4}\left(t_{1}+s_{2}\right)^{2}>0 \tag{4.2}
\end{equation*}
$$

(4.2) also implies that s_{1} and t_{2} are of the same sign.

Taking $\alpha=k_{1} u+k_{2} v+k_{3} w$, the entries $c_{i j}$ of the matrix $\hat{C}(\alpha)$ becomes

$$
\begin{aligned}
& c_{11}=\alpha^{T} u Q u-u^{T} A u=-u^{T} A u \\
& c_{12}=\alpha^{T} u Q v-u^{T} A v=s_{1} k_{2}+s_{2} k_{3}-u^{T} A v
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{cl}_{3}=\alpha^{\mathrm{T}} u Q w-u^{T} A w=t_{1} k_{2}+t_{2} k_{3}-u^{T} A w \\
& c_{22}=\alpha^{T} v Q v-v^{T} A v=-2 s_{1} k_{1}+p k_{3}-v^{T} A v \\
& c_{33}=\alpha^{T} w Q w-w^{T} A w=-2 t_{2} k_{1}+q k_{2}-w^{T} A w \\
& c_{23}=\alpha^{T} v Q w-v^{T} A w=-\left(t_{1}+s_{2}\right) k_{1}-\frac{1}{2} \mathrm{pk}_{2}-\frac{1}{2} \mathrm{qk}_{2}-\mathrm{v}^{\mathrm{T}} A w
\end{aligned}
$$

Since D is non-singular, we can choose k_{2} and k_{3} so that $c_{12}=c_{13}=0$. Since s_{1} and t_{2} are of the same sign, we can choose k_{1} with $\left|\mathrm{k}_{1}\right|$ sufficiently large to make $c_{22}>0, c_{33}>0$ and

$$
\left|\begin{array}{ll}
c_{22} & c_{23} \\
c_{23} & c_{33}
\end{array}\right|=\left\{4 s_{1} t_{2}-\left(t_{1}+s_{2}\right)^{2}\right\} k_{1}^{2}+k_{1} d_{1}+d_{2}>0
$$

where d_{1} and d_{2} are constants. Hence for such a choice of k_{1}, k_{2}, k_{3} the matrix $\hat{C}(\alpha)$ becomes

$$
\hat{\mathbf{C}}(\alpha)=\left(\begin{array}{ccc}
-u^{T} A u & 0 & 0 \\
0 & c_{22} & c_{23} \\
0 & c_{23} & c_{33}
\end{array}\right)
$$

which is positive definite.
Now consider the subcase (b). Here rank $D=1$. Without loss of generality we can assume that $\left(t_{1}, t_{2}\right) \neq(0,0)$. This implies that $t_{2} \neq 0$, by property (i). Let $\left(s_{1}, s_{2}\right)=k\left(t_{1}, t_{2}\right)$. This implies that $=t_{1} / t_{2}$. For suppose that $k \neq t_{1} / t_{2}$. Then for any scalar $\mathrm{c}, \mathrm{f}\left(\mathrm{cu}+\mathrm{t}_{2} \mathrm{v}-\mathrm{t}_{1} \mathrm{w}\right)=\left\{2 \mathrm{c}\left(\mathrm{kt}_{2}-\mathrm{t}_{1}\right)+\mathrm{t}_{2} \mathrm{p}+\mathrm{t}_{1} \mathrm{q}\right\}\left(\mathrm{t}_{1} \mathrm{v}+\mathrm{t}_{2} \mathrm{w}\right)$
Since $k t_{2}-t_{1} \neq 0$, we can choose the scalar c so that $f\left(c u+t_{2} v-t_{1} w\right)=0$ implying that $t_{1}=t_{2}=0$ contradicting our assumption. This also implies that $t_{2} p+t_{1} q \neq 0$. Hence

$$
D=\left(\begin{array}{ll}
t_{1}^{2} / t_{2} & t_{1} \\
t_{1} & t_{2}
\end{array}\right)
$$

With this D

$$
\begin{aligned}
& u Q v=\frac{t_{1}^{2}}{t_{2}} v+t_{1} w \\
& u Q w=t_{1} v+t_{2} w \\
& v Q v=\frac{-2 t_{1}^{2}}{t_{2}} u+p w \\
& w Q w=-2 t_{2} u+q v \\
& v Q w=-2 t_{1} u-\frac{1}{2} p v-\frac{1}{2} q w
\end{aligned}
$$

Since $v Q v \neq 0$, we have $\left(t_{1}, p\right) \neq(0,0)$. Taking $\alpha=\frac{1}{2} r_{2} t_{2} u+r_{1} q v+r_{1} p w$, where $r_{1}>0$, $r_{2}>0$ to be chosen suitably, the entries $c_{i j}$ of the matrix $\hat{C}(\alpha)$ becomes

$$
\begin{aligned}
& s_{11}=-u^{T} A u, c_{12}=\frac{r_{1} t_{1}}{t_{2}}\left(t_{1} q+t_{2} p\right)-u^{T} A v, c_{13}=r_{1}\left(t_{1} q+t_{2} p\right)-u^{T} A w \\
& c_{22}=r_{2} t_{1}^{2}+r_{1} p^{2}-v^{T} A v, c_{23}=t_{1} t_{2} r_{2}-r_{1} p q-v^{T} A w \\
& c_{33}=r_{2} t_{2}^{2}+r_{1} q^{2}-w^{T} A w
\end{aligned}
$$

Now $c_{11}=-u^{T} A u>0,\left|\begin{array}{ll}c_{11} & c_{12} \\ c_{12} & c_{22}\end{array}\right|=r_{2}\left(-u^{T} A u\right) t_{1}^{2}+d_{1}\left(r_{1}\right)$, where $d_{1}\left(r_{1}\right)$ is a quadratic in r_{1} and $\operatorname{det} \hat{C}(\alpha)=r_{2}\left[\left(-u^{T} A u\right)\left(t_{1} q+t_{2} p\right)^{2} r_{1}+d_{2}\right]+d_{3}\left(r_{1}\right)$, where d_{2} is a constant and $d_{3}\left(r_{1}\right)$ is a cubic polynomial in r_{1}. Hence, if $t_{1} \neq 0$, then we can choose $r_{1}>0$ large enough to make $-\left(u^{T} A u\right)\left(t_{1} q+t_{2} p\right)^{2} r_{1}+d_{2}>0$. After choosing such an $r_{1}>0$, we can choose $r_{2}>0$ sufficiently large to make $\left|\begin{array}{ll}c_{11} & c_{12} \\ c_{12} & c_{22}\end{array}\right|>0$ and $\operatorname{det} \hat{C}(\alpha)>0$. In otherwords we can choose α so that $\hat{\mathrm{C}}(\alpha)$ is positive definite.

If $t_{1}=0$, then $\left|\begin{array}{ll}c_{11} & c_{12} \\ c_{12} & c_{22}\end{array}\right|=\left(-u^{T} A u\right) p^{2} r_{1}+d_{4}$, where d_{4} is a constant and $\operatorname{det} \hat{C}(\alpha)=r_{2} t_{2}^{2}\left[\left(-u^{T} A u\right) p^{2} r_{1}+d_{4}\right]+d_{5}\left(r_{1}\right)$, where $d_{5}\left(r_{1}\right)$ is a quadratic in r_{1}. As before we can choose $r_{1}>0$ to make

$$
\left(-u^{\mathrm{T}} \mathrm{Au}\right) \mathrm{p}^{2} \mathrm{r}_{1}+\mathrm{d}_{4}>0
$$

and after choosing such an $\mathrm{r}_{1}>0$, we can choose $\mathrm{r}_{2}>0$ to make $\operatorname{det} \hat{\mathrm{C}}(\alpha)>0$. In other words we can choose an α so that $\hat{C}(\alpha)$ is positive definite.

Now consider the subcase (c). Here rank $D=0$, which implies that $s_{1}=s_{2}=t_{1} t_{2}=0$.
Hence $u Q v=0, u Q w=0, v Q v=p w, p \neq 0, w Q w=q v, q \neq 0, v Q w=-\frac{1}{2} p v-\frac{1}{2} q w$ and $f(q v+p w)=0$.
Since $p q \neq 0$, this implies a contradiction. Hence, subcase (c) cannot happen.
This completes the proof.
For an example, the Lorenz system (2.4)

$$
\begin{aligned}
& x^{\prime}=A x+f(x), \quad \text { where } \\
& A=\left(\begin{array}{rrr}
-a & a & 0 \\
r & -1 & 0 \\
0 & 0 & -b
\end{array}\right), a>0, r>0, b>0 \text { and } f(x)=\left(\begin{array}{c}
0 \\
-x z \\
x y
\end{array}\right)
\end{aligned}
$$

is point dissipative. The vectors $u=(1,0,0), v=(0,1,0), w=(0,0,1)$ are three linearly independent zeros of $f(x)$ and $Z=S(u) \cup S(v, w)$. The condition $u^{T} A u<0$ for all $u \in Z$ can easily be verified.

References

1. Markus, L., Quadratic Differential Equations And Non-Associative Algebras, cont. to the theory of non-linear osc Vol. V, Princeton University Press, Princeton, N.J. 1960.
2. Gerber, P.D. Left Alternative Algebras and Quadratic Differential Equations I, IBM Research Report RC 4011, Aug. 30, 1972.
3. Frayman, Morris. Quadratic Differential Systems: A Study In Nonlinear Systems Theory, Ph.D. Dissertation, University of Maryland, College Park, Maryland, 1974.
4. Bose, A. K. and Reneke, J. A., Sufficient Conditions For Two-Dimensional Point Dissipative Non-Linear Systems, Internat. J. Math \& Math Sci., Vol. 12 No. 12 (1989)93-696.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

