A SPECIAL PRIME DIVISOR OF THE SEQUENCE:
\[Ah + B, A(h+1) + B, \ldots, A(h+k-1) + B \]

SAFWAN AKBIK
Department of Mathematics
Hofstra University
Hempstead, New York 11550

(Received January 26, 1990 and in revised form March 28, 1991)

1. INTRODUCTION. Schur showed \[1,2,3\] that for every pair of integers \(h, k \) where \(h \geq k \), at least one of the integers

\[h + 1, \ h + 2, \ h + 3, \ldots, \ h + k, \]

is divisible by a prime \(p > k \).

Schur also showed \[1\] that for \(h > k > 2 \), one of the odd integers

\[2h + 1, \ 2(h+1) + 1, \ldots, \ 2(h+k-1) + 1 \]

is divisible by a prime \(p > 2k + 1 \). In this paper we generalize these two results by showing the following theorem.

THEOREM 1. Let \(A \) and \(B \) be two relatively prime positive integers. Then for \(h > k \) and sufficiently large \(k \), at least one of the integers

\[Ah + B, \ A(h+1) + B, \ldots, A(h+k-1) + B \quad (1.1) \]

is divisible by a prime \(p \) such that

\[p > Ak + B. \quad (1.2) \]

We need the following lemma.

LEMMA 1. Let \(\beta > 1 \) be given. Then for sufficiently large \(x \), there is always a prime \(p \) such that

\[x < p \leq \beta x \quad \text{and} \quad p \equiv B \pmod{A}. \]

PROOF. Define the function \(\theta_A(x) \) by

\[\theta_A(x) = \sum_{\substack{p \leq x \\atop p \equiv B \pmod{A}}} \log p, \]

where the sum is taken over all primes less than or equal to \(x \) and congruent to \(B \) modulo \(A \). Then the prime number theorem for an arithmetic progressions asserts that

\[\theta_A(x) \sim \frac{x}{\varphi(A)}, \]
where \(\varphi(A) \) is the number of integers that are less than \(A \) and relatively prime to \(A \). Let \(\epsilon > 0 \) be given, then if \(x \) is sufficiently large we have

\[
(1 - \epsilon) \frac{\varphi(A)}{A} < \theta_A(x) < (1 + \epsilon) \frac{\varphi(A)}{A}.
\]

Thus

\[
\sum_{\substack{z < p \leq \beta x \\atop p \equiv B \pmod{A}}} \log p = \theta_A(\beta x) - \theta_A(x) > \frac{1}{\varphi(A)} [(1 - \epsilon)\beta x - (1 + \epsilon)x]
\]

\[
= \frac{\varphi(A)}{\varphi(A)} [\beta - 1 - \epsilon (\beta + 1)].
\]

If \(\epsilon \) is chosen so that \(0 < \epsilon < \frac{\beta - 1}{\beta + 1} \), then

\[
\sum_{\substack{z < p \leq \beta x \\atop p \equiv B \pmod{A}}} \log p > 0.
\]

Thus if \(x \) is large, then there is at least one prime \(p \) such that \(x < p \leq \beta x \) and \(p \equiv B \pmod{A} \), and the lemma is proved.

Proof of Theorem 1. Suppose the theorem is false for a pair \((h, k)\), then the numbers

\[A(h + B), A(h + 1) + B, \ldots, A(h + k - 1) + B,\]

have only prime divisors which are less than or equal to \(Ak + B \). Consider

\[
G = \frac{(Ah + B)(A(h + 1) + B)\ldots(A(h + k - 1) + B)}{B(A + B)(2A + B)\ldots(Ak - A + B)} \quad (1.3)
\]

and let \(w_p \) be the integer exponent (positive, negative or zero) of \(p \) which appears in \(G \). Then by our assumption, every prime appearing in \(G \) is less than or equal to \(Ak + B \). Thus,

\[
G = \prod_{p \leq Ak + B} p^{w_p}. \quad (1.4)
\]

We claim that

\[
\begin{cases}
 w_p = 0 & \text{if } p \mid A \\
 w_p \leq \frac{\log(Ah + Bk)}{\log p} & \text{if } p \not\mid A
\end{cases}
\]

For if \(p \mid A \), then \(p \not\mid A j + B \) for any integer \(j \); otherwise we would have \(p \mid B \) and so \(p \) divides both \(A \) and \(B \). This is impossible, since \(A \) and \(B \) are relatively prime. Thus \(p \) does not divide any factor of either the numerator or the denominator of (1.3), hence \(w_p = 0 \).

Suppose now that \(p \not\mid A \); then it is easy to see that

\[
w_p = \sum_{1 < p^r \leq A(h + k - 1) + B} (U(p^r) - V(p^r)), \quad (1.6)
\]

where the sum is taken over all prime powers \(p^r \) between 1 and \(A(h + k - 1) + B \). \(U(p^r) \) is the number of factors in the numerator of (1.3) that are divisible by \(p^r \) and \(V(p^r) \) is the number of factors in the denominator of (1.3) that are divisible by \(p^r \).

Since \(Ax + B \equiv 0 \pmod{p^r} \) has only one solution for \(x \) modulo \(p^r \), \(Ax + B \) is divisible by \(p^r \) for only one value of \(x \) when \(x \) runs through \(p^r \) consecutive integers. Therefore,

\[
\left[\frac{k}{p^r} \right] \leq U(p^r) \leq \left[\frac{k}{p^r} \right] + 1, \quad \left[\frac{k}{p^r} \right] \leq V(p^r) \leq \left[\frac{k}{p^r} \right] + 1.
\]
Thus

\[-1 \leq U(p^r) - V(p^r) \leq 1.\]

This and (1.6) give

\[w_p \leq \sum_{p^r \leq A(h+k)} 1 \leq \frac{\log (Ah + Ak)}{\log p},\]

and the claim is proved. Thus

\[w_p \leq Ah + Ak, \quad \text{for all } p.\]

This and (1.4) give

\[G \leq \prod_{p \leq Ak + B} (Ah + Ak);\]

thus

\[G \leq (Ah + Ak)^{\pi(Ak + B)}. \tag{1.7}\]

On the other hand, by (1.3) we have

\[G = \prod_{j=1}^{k} \frac{A(h + j - 1) + B}{A(j - 1) + B} = \prod_{j=1}^{k} \frac{Ah + Aj - A + B}{Aj - A + B} = \prod_{j=1}^{k} \left(1 + \frac{Ah}{Aj - A + B}\right) \geq \prod_{j=1}^{k} \left(1 + \frac{Ah}{Aj}\right) \quad \text{(since } A > B) \geq \left(1 + \frac{h}{k}\right)^k,\]

or

\[G \geq \left(1 + \frac{h}{k}\right)^k. \tag{1.8}\]

Combining (1.7) and (1.8) yields

\[\left(1 + \frac{h}{k}\right)^k \leq (Ah + Ak)^{\pi(Ak + B)}.\]

Taking logarithms, we get

\[k \log \left(1 + \frac{h}{k}\right) \leq \pi(Ak + B) \log (Ah + Ak).\]

Writing \(\log (Ah + Ak) = \log Ak + \log \left(1 + \frac{h}{k}\right)\) gives

\[\{k - \pi(Ak + B)\} \log \left(1 + \frac{h}{k}\right) \leq \pi(Ak + B) \log Ak.\]

Dividing both sides of this inequality by \(Ak + B\), we get

\[\left\{\frac{k}{Ak + B} - \frac{\pi(Ak + B)}{Ak + B}\right\} \log \left(1 + \frac{h}{k}\right) \leq \frac{\pi(Ak + B) \log Ak}{Ak + B} \leq \frac{\pi(Ak + B) \log (Ak + B)}{Ak + B} \leq \frac{3}{2}.\]

Thus,

\[\left\{\frac{k}{Ak + B} - \frac{\pi(Ak + B)}{Ak + B}\right\} \log \left(1 + \frac{h}{k}\right) \leq \frac{3}{2}. \tag{1.9}\]
Consider two cases.

Case I. \(\frac{h}{k} \geq e^{2A} - 1 \)

Then \(\log \left(1 + \frac{h}{k} \right) \geq 2A \). Using this in (1.9) we obtain

\[
\left\{ \frac{k}{Ak + B} - \frac{\pi(Ak + B)}{Ak + B} \right\}(2A) \leq \frac{3}{2}
\]

Letting \(k \to \infty \) in this inequality gives

\[
\frac{1}{A} \cdot 2A \leq \frac{3}{2},
\]

or

\[
2 \leq \frac{3}{2}.
\]

This provides a contradiction that proves the theorem in this case.

Case II. \(\frac{h}{k} < e^{2A} - 1 \)

Then

\[
\frac{Ah + Ak + B}{Ah} = 1 + \frac{B}{Ah}
\]

\[
> 1 + \frac{1}{e^{2A} - 1} + \frac{B}{Ah}
\]

or

\[
\frac{Ah + Ak + B}{Ah} \geq 1 + c,
\]

where \(c \) is a positive constant (depending only on \(A \)). Thus

\[
\frac{Ah + Ak + B}{Ah} > \beta, \quad \text{where } \beta = 1 + c > 1.
\]

By Lemma 1 if \(h \) is large (or \(k \) is large, since \(h > k \)), there exists a prime integer \(p \) such that \(p \equiv B \pmod{A} \) and

\[
Ah < p \leq \beta Ah < Ah + Ak + B.
\]

Thus

\[
Ah + B \leq p \leq Ah + Ak + B - A.
\]

Therefore one of the integers

\[
Ah + B, Ah + 1 + B, \ldots, Ah + k - 1 + B,
\]

is a prime \(p \). Since \(p \geq Ah + B \) and \(h > k \), then

\[
p > Ak + B,
\]

which is condition (1.2). This completes the proof of the theorem.

REFERENCES

Submit your manuscripts at
http://www.hindawi.com