A DISCRETE STOCHASTIC KOROVKIN THEOREM

GEORGE A. ANASTASSIOU
Department of Mathematical Sciences
Memphis State University
Memphis, Tennessee 38152 U.S.A.

(Received June 2, 1989 and in revised form October 16, 1989)

ABSTRACT. In this article we give a sufficient condition for the pointwise -- in
the first mean Korovkin property on $B_0(P)$, the space of stochastic processes with
real state space and countable index set P and bounded first moments.

KEY WORDS AND PHRASES. Positive linear operator, stochastic processes, pointwise
- in the first mean convergence.

1980 AMS SUBJECT CLASSIFICATION CODE. (1985 Revision): Primary 41A36, 60F25;
Secondary 60G99.

1. INTRODUCTION.

Let (Ω_0, A_0, τ) be a probability space and let P denote a fixed countable set.
Consider stochastic processes X with real state space and the expectation operator
$E(X)(t) = \int X(t, \omega) \tau(\omega) d\omega$, $t \in P$. Define $B_0(P) = \{X: \sup_{t \in P} E[X](t) < \infty\}$. Let $T_n: B_0(P) \rightarrow B_0(P)$ be any sequence of positive linear operators such that $E(T_n) = T_n E$, all
$n = 1, 2, \ldots$. In Theorem 1, under Korovkin type assumptions, we give a sufficient
condition such that for each $X \in B_0(P),$

$$
\lim_{n \to \infty} E[(T_n X)(t, \omega) - X(t, \omega)] = 0, \text{for each } t \in P.
$$

In [3], see Theorem 3.2, was treated the continuous case, that is, when P is an un-
countable compact space. There the sufficient condition is similar to ours, however,
it is produced under the additional assumption that T_n is a stochastically simple
operator.

Our result has as follows:

THEOREM 1. Let (Ω_0, A_0, τ) be a probability space and $P = \{t_1, \ldots, t_j, \ldots\}$ be a
countable set of cardinality ≥ 2. Consider the space of stochastic processes with
real state space

$$
B_0(P) = \{X: \sup_{t \in P} |X(t, \omega)| \tau(\omega) < \infty\}
$$

and the space

$$
B(P) = \{f: P \rightarrow \mathbb{R} \mid \|f\|_{\infty} < \infty\},
$$

where

$$
\|f\|_{\infty} = \sup_{t \in P} |f(t)|; B(P) \subset B_0(P).
$$

Let $T_n: B_0(P) \rightarrow B_0(P)$ be a sequence of positive linear operators that are E-commu-
tative, i.e.

$$
(E(T_n X))(t, \omega) = (T_n E(X))(t, \omega), \text{ for all } (t, \omega) \in P \times \Omega_0,
$$

and

$$
\lim_{n \to \infty} E[(T_n X)(t, \omega) - X(t, \omega)] = 0, \text{for each } t \in P.
$$
where
\[(EX)(t) := E(X(t,\omega)) := \int_{\Omega} X(t,\omega) \tau(d\omega)\]
is the expectation.

Also assume that \((T_n 1)(t,\omega) = 1\), for all \((t,\omega) \in \mathbb{P} \times \Omega\). For
\[\{X_1(t,\omega),\ldots,X_k(t,\omega)\} \subset B_0(\mathbb{P})\]
assume that
\[\lim_{n \to \infty} E [(T_n X_i)(t_j,\omega) - X_i(t_j,\omega)] = 0,\]
for all \(t_j \in \mathbb{P}\) and all \(i = 1,\ldots,k\). (i.e.
\[\lim_{n \to \infty} [(T_n(EX_i))(t_j) - (EX_i)(t_j)] = 0,\]
for all \(t_j \in \mathbb{P}\) and \(i = 1,\ldots,k\).

In order that
\[\lim_{n \to \infty} E [(T_n X)(t_j,\omega) - X(t_j,\omega)] = 0,\]
for all \(t_j \in \mathbb{P}\) and all \(X \in B_0(\mathbb{P})\), it is enough to assume that each \(t_j \in \mathbb{P}\) there
are real constants \(\beta_1,\ldots,\beta_k\) such that
\[\sum_{i=1}^{k} \beta_i E[X_i(t,\omega) - X_i(t_j,\omega)] \geq 1, \text{ for all } t \in \mathbb{P} - \{t_j\}.

PROOF. If there exists \(X \in B_0(\mathbb{P})\) and \(t_j \in \mathbb{P}\) such that
\[E [(T_n X)(t_j,\omega) - X(t_j,\omega)] \neq 0,\]
then there exist a subsequence \(T_n^{(j)}\) and an \(\varepsilon > 0\) such that
\[|(E(T_n X))(t_j) - (EX)(t_j)| > \varepsilon, \text{ for all } n \geq 1.\]

By E-commutativity of \(T_n^{(j)}\) we get
\[|(T_n^{(j)}(EX))(t_j) - (EX)(t_j)| > \varepsilon, \text{ for all } n \geq 1.\]

Let \(\mu\) be a positive finite measure on \(\mathbb{P}\) with \(\mu(t) > 0\), for all \(t \in \mathbb{P}\). Here
\(B(\mathbb{P}) \subset L_p(\mathbb{P},\mu), 1 \leq p < \infty.\)

Let \(f \in B(\mathbb{P})\), then \(E(f) = f\). Hence \(T_n(f) = T_n(Ef) = ET_n(f)\) and \(T_n(f) \in B(\mathbb{P})\),
i.e. \(T_n\) maps \(B(\mathbb{P})\) into itself. Because each positive linear functional \(T_n(\cdot,t_j)\)
on \(B(\mathbb{P})\) is bounded, by Riesz representation theorem, for the specific \(j = j_0\),
there exists \(g_{t_j_0}^1 \in L_q(\mathbb{P},\mu)\) where \(\frac{1}{p} + \frac{1}{q} = 1\) such that
\[(T_n(f))(t_j_0) = \int_{\mathbb{P}} f(t) g_{t_j_0}^1(t) \mu(dt), \text{ for all } f \in B(\mathbb{P}).\]

By \(T_n(1) = 1\) and the positivity of \(T_n(\cdot,t_j)\) one obtains
\[\int_{\mathbb{P}} g_{t_j_0}^1(t) \mu(dt) = 1 \quad \text{and} \quad g_{t_j_0}^1(t) \geq 0, \text{ for all } t \in \mathbb{P}.\]

Since \(EX \in B(\mathbb{P})\), we have
\[(T_n^{(j_0)}(EX))(t_j) = \int_{\mathbb{P}} (EX)(t) \cdot g_{t_j_0}^1(t) \cdot \mu(dt).\]
Thus
\[\varepsilon < |(T_n(\lambda \cdot (EX))(t_j) - (EX)(t_j)| = \left| \int P (EX(t) \cdot g_{t_j,\lambda_n} (t) \cdot \mu(dt) - \int P (EX(t_j) \cdot g_{t_j,\lambda_n} (t) \cdot \mu(dt) \right| \]
\[= \left| \int_{P - \{t_j\}} [(EX(t) - (EX)(t_j)] \cdot g_{t_j,\lambda_n} (t) \cdot \mu(dt) \right| \]
\[\leq ||EX - (EX)(t_j)||_\infty \cdot \left(\int_{P - \{t_j\}} g_{t_j,\lambda_n} (t) \mu(dt) \right), \]
so that
\[\int_{P - \{t_j\}} g_{t_j,\lambda_n} (t) \mu(dt) \geq \frac{\varepsilon}{||EX - (EX)(t_j)||_\infty} =: \delta > 0, \text{ for all } n > 1. \]

There cannot be real constants \(\beta_1, \ldots, \beta_k \) with
\[\sum_{i=1}^k \beta_i E[X_i(t, \omega) - X_i(t_j, \omega)] \geq 1, \text{ for all } t \in P - \{t_j\}. \]

Since, otherwise, we would have
\[\sum_{i=1}^k \beta_i \int_{P - \{t_j\}} [(EX_i(t) - (EX_i)(t_j)] \cdot g_{t_j,\lambda_n} (t) \cdot \mu(dt) \]
\[\geq \int_{P - \{t_j\}} g_{t_j,\lambda_n} (t) \cdot \mu(dt) > \delta. \]

(Note that
\[(T_n(\lambda \cdot (EX_i))(t_j) = \int P (EX_i(t) \cdot g_{t_j,\lambda_n} (t) \cdot \mu(dt), \text{ for all } i = 1, \ldots, k.) \]

However, from the assumptions of the theorem, we have
\[\lim_{n \to \infty} (T_n(\lambda \cdot (EX_i))(t_j) = (EX_i)(t_j), \text{ all } i = 1, \ldots, k. \]

Hence
\[0 = \lim_{n \to \infty} \left(\sum_{i=1}^k \beta_i [(T_n(\lambda \cdot (EX_i))(t_j) - (EX_i)(t_j)] > \delta. \]

Thus \(\delta < 0 \), contradicting \(\delta > 0 \). □

To show that the assumptions of Theorem 1 are not empty and they are powerful, we present

EXAMPLE 2. (i) Consider the probability space \([-a,a], B, \lambda \cdot \frac{\lambda}{2a}\), where \(a > 0 \),
\(B \) the Borel \(\sigma \)-algebra on \([-a,a]\), \(\lambda \) the Lebesgue measure on \([-a,a]\). Since
\(\frac{\lambda}{2a}([-a,a]) = 1, \frac{\lambda}{2a} \) is a probability measure on \([-a,a]\). Let also \(P = \{1, \pm 2, \ldots, \pm T\} \) be a finite set of integers. That is here \(\omega \in \Omega = [-a,a] \) and \(t \in P \).
Consider the sequence of operators

\[T_n : B_0^0(P) \to B_0^0(P) \]

such that

\[(T_nX)(t,\omega) = X(t,\omega)(1 - e^{-n|t|}) + X(-t,\omega)e^{-n|t|}, \]

for all \(n \geq 1 \).

If \(X \geq 0 \) then \(T_nX \geq 0 \), that is \(T_n \) is a positive operator, furthermore \(T_n(1) = 1 \), for all \(n \geq 1 \). It is obvious that \(T_n \) is linear.

Observe that

\[(E(T_nX))(t,\omega) = (EX)(t)\cdot(1 - e^{-n|t|}) + (EX)(-t)e^{-n|t|} \]

i.e., \(ET_n = T_nE \), that is \(T_n \) is \(E \)-commutative for all \(n \geq 1 \). Therefore \(T_n \) fulfills the assumption of Theorem 1.

From

\[(E(T_nX))(t) = (EX)(t)\cdot(1 - e^{-n|t|}) + (EX)(-t)e^{-n|t|}, \]

it is clear that

\[\lim_{n \to \infty} E[(T_nX)(t,\omega) - X(t,\omega)] = 0, \]

for all \(t \in P \) and all \(X \in B_0^0(P) \). Thus \(T_n \) fulfills the conclusion of Theorem 1.

(ii) Continuing in the setting of part (i): Let \(X_1(t,\omega) = 1 \), \(X_2(t,\omega) = 2t|\omega|/a \)

and \(X_3(t,\omega) = 3t^2\omega^2/a^2 \). Then \((EX_1)(t) = 1 \), \((EX_2)(t) = t \) and \((EX_3)(t) = t^2 \). It is obvious that \(X_1, X_2, X_3 \in B_0^0(P) \). We would like to find \(\beta_1, \beta_2, \beta_3 \) such that

\[\sum_{i=1}^{3} \beta_i[(EX_i)(t) - (EX_i)(t_j)] \geq 1, \]

for all \(t \in P - \{t_j\} \).

For that we can pick \(\beta_1 \) an arbitrary real number, \(\beta_2 = -2t_j \) and \(\beta_3 = 1 \). We have

\[\beta_1(1 - 1) + (-2t_j)(t - t_j) + (t^2 - t_j^2) = (t - t_j)^2 \geq 1, \]

for all \(t \in P - \{t_j\} \). Hence \(X_i, i = 1,2,3 \) fulfill the sufficient condition of Theorem 1.

Trivially \(T_nX_i = X_i \), giving us \(ET_nX_i = EX_i \), for \(i = 1,3 \). And

\[(T_nX_2)(t,\omega) = X_2(t,\omega)(1 - e^{-n|t|}) + X_2(-t,\omega)e^{-n|t|}, \]

implying

\[(E(T_nX_2))(t) = t(1 - 2e^{-n|t|}). \]

Clearly

\[\lim_{n \to \infty} (E(T_nX_2))(t) = (EX_2)(t). \]

We have seen how \(X_i, i = 1,2,3 \) fulfill the assumptions of Theorem 1.

REFERENCES

Submit your manuscripts at http://www.hindawi.com