In 1948, Samuel [2] pointed out that the intersection of two group topologies need not be a group topology. However, a number of properties that hold for a group topology still hold for a topological space that is an intersection of group topologies. In order to study these properties, we shall describe a class of topologies that can be placed on a group which we call semicontinuous topologies. (We point out here that Fuchs [1] calls these spaces semitopological groups).

One important attribute of topological groups is separation. In particular, a topological group is Hausdorff if and only if the identity is a closed subset. While this is not true for semicontinuous groups, we shall see that an interesting "echo" of this property is true.

For each group G we have a bijection $\text{inv}: G \to G$ defined by $\text{inv}(x) = x^{-1}$. Also for any fixed $a \in G$ we have bijections $\text{la}: G \to G$ defined by $\text{la}(x) = az$ and $\text{ra}: G \to G$ defined by $\text{ra}(x) = xa$.

DEFINITION. A semicontinuous group is a group G and a topology τ on G making inv, la_a, and ra_a continuous for $a \in G$.

Clearly a semicontinuous group is a homogeneous space. Thus a great deal can be determined by considering a basis for the topology at the identity. In a manner analogous to that found in the theory of topological groups, one can demonstrate the following:

PROPOSITION 1. If (G, τ) is a semicontinuous group and \mathcal{U} is a neighborhood base at the identity, then \mathcal{U} satisfies

(i) If $U, V \in \mathcal{U}$, then there exists $W \in \mathcal{U}$ such that $W \subseteq U \cap U$.
(ii) If $a \in U$ and $U \in \mathcal{U}$, then there exists $V \in \mathcal{U}$ such that $Va \subseteq U$.
(iii) If $a \in U \in \mathcal{U}$ then there exists $V \in \mathcal{U}$ such that $Va \subseteq U$.
(iv) If $a \in U \in \mathcal{U}$ and $x \in G$ then there exists $V \in \mathcal{U}$ such that $xV^{-1} \subseteq U$.

Furthermore, if \mathcal{U} is any collection of subsets of G, each containing the identity, and \mathcal{U} satisfies (i)-(iv) above, then there exists a unique semicontinuous topology τ on G for which \mathcal{U} is a neighborhood base at the identity.
Any collection of subsets \mathcal{Y} satisfying (i)-(iv) is called a semifundamental system. Let $V = \{x \mid x = r + \sqrt{2} \text{ and } r \in \mathbb{Q}\} \subseteq \mathbb{R}$ and let W be the collection of all translation sets $a + V$ such that $0 \in a + V$. Finally let \mathcal{Y} be the collection of all finite intersections of elements of W.

A moment's reflection shows that \mathcal{Y} is a semifundamental system that generates a topology τ which is finer than the usual topology on \mathbb{R}. The set Q is closed in (\mathbb{R}, τ). Yet the quotient topology generated on \mathbb{R}/Q by projection from (\mathbb{R}, τ) is the finite complement topology. Therefore the separation properties for semicontinuous groups are clearly different from those found in topological groups.

Another interesting example of a semicontinuous topology can be described as follows; let B_n be the open ball of radius $1/n$ centered at the origin of the plane, and let $V_n = B_n - \{(x, y) \mid 0 < \frac{1}{n}x \leq y \leq nx\}$. The collection of sets $\{V_n\}_{n=2}^{\infty}$ forms a semifundamental system for the group $(\mathbb{R}^2, +)$. The relative topology on $(\mathbb{Q}^2, +)$ is an example of a second countable metric space that cannot be a topological group since no square of an open set can be placed inside V_n.

Let (G, t) be a semicontinuous group and $m: G \times G \to G$ the multiplication map. We let $q(t)$ denote the quotient topology on G generated by m when the product topology $t \times t$ is placed on $G \times G$. If N is a normal subgroup of G and (G, t) is a semicontinuous group, we shall denote the quotient topology on G/N generated by the natural map $\pi: G \to G/N$, by $\pi(t)$.

Lemma 2. If (G, t) is a semicontinuous group, then both m and π are open maps and both G/N and $(G, q(t))$ are semicontinuous groups.

Proof. Let $U \times V$ be a basic open set in $t \times t$. Then $m^{-1}(m(U \times V)) = \bigcup_{g \in G} (Ug \times g^{-1}V)$. Therefore m is an open map. Likewise $\pi^{-1}((U \times U)) = UN$ which is open in (G, t) whenever $U \times U$. Thus π is an open map.

Since $\lambda \times id: (G \times G, t \times t) \to (G \times G, t \times t)$ is continuous and $q(t)$ is a quotient topology, $m_\lambda(G, q(t)) \to (G, q(t))$ is continuous. Similar arguments show that the maps $r_{\lambda_\lambda}: (G, q(t)) \to (G, q(t))$ and $inv: (G, q(t)) \to (G, q(t))$ are continuous. The proof that the quotient topology on G/N is semicontinuous is done in the same fashion.

Lemma 3. If $S \subseteq G$ then $S = \bigcap_{V \in \mathcal{Y}} VS$.

Proof. $x \notin \bigcap_{V \in \mathcal{Y}} V$ iff there exists $W \in \mathcal{Y}$ with $x \notin WS$ iff $W^{-1}x \cap S = \emptyset$.

Theorem 4. G/N is Hausdorff iff $N = \bigcap_{V \in \mathcal{Y}} V^2$.

Proof. We consider the following commutative diagram:

$$
\begin{array}{ccc}
G \times G & \xrightarrow{\pi} & G/N \\
\downarrow m & & \downarrow \pi \\
G & \xrightarrow{\pi} & G/N
\end{array}
$$

We have that $\{V^2 \mid V \in \mathcal{Y}\}$ is a semifundamental system for $q(t)$ whenever \mathcal{Y} is a semifundamental system for t. The identity element in $(G/N, \pi(q(t)))$ will be closed if and only if $N = \bigcap_{V \in \mathcal{Y}} V^2$. The identity element in $(G/N, q(\pi(t)))$ will be closed if and only if the diagonal is closed in $G/N \times G/N$. However $\pi(q(t)) = q(\pi(t))$ since the maps are open.

Corollary 5. (G, t) is Hausdorff if and only if $\bigcap_{V \in \mathcal{Y}} V^2 = \{e\}$.

COROLLARY 6. If \((G,t)\) is a minimal Hausdorff semicontinuous group then \((G,t)\) is topological group if and only if \(\bigcap_{V \in \mathcal{V}} V^4 = \{e\}\).

We can define an equivalence relation on \((G,t)\) by defining \(x \sim y\) if and only if there does not exist \(V \in \mathcal{V}\) such that \(xV \cap yV = \phi\). Let \(K\) denote the equivalence class of \(e\) under this equivalence relation. We call \(K\) the **Hausdorff Kernel** of \((G,t)\).

THEOREM 7. \(K = \bigcap_{V \in \mathcal{V}} V^2\) and \(K\) is the minimum normal subgroup with the property that \(G/K\) is Hausdorff.

PROOF. We note by Lemma 3 that \(\bigcap_{V \in \mathcal{V}} V^2\) is the closure of \(\{e\}\) in \((G,q(t))\). Therefore by an argument similar to that for topological groups, \(\bigcap_{V \in \mathcal{V}} V^2\) is a normal subgroup of \(G\). Since we can without loss of generality assume that \(V\) is symmetric, it is clear the \(K = \bigcap_{V \in \mathcal{V}} V^2\). The proof of Theorem 4 shows that \(G/K\) is Hausdorff if and only if \(K\) is closed in \((G,q(t))\). But \(K\) is the smallest closed normal subgroup in \((G,q(t))\).

In a like manner we can define an equivalence relation on \((G,t)\) by declaring \(x \sim y\) if and only if there does not exist a continuous function \(\phi: G \to R\) with \(\phi(x) \neq \phi(y)\). The equivalence class of \(e\) under this relation will also be a closed normal subgroup that we call the **completely Hausdorff kernel** of \((G,t)\).

REFERENCES

