INVOLUTIONS WITH FIXED POINTS IN 2-BANACH SPACES

M.S. KHAN
Department of Mathematics and Computing
College of Science, Sultan Qaboos University
P.O. Box 32486, Alkhod, Muscat,
Sultanate of Oman

and

M.D. KHAN
Department of Mathematics, Faculty of Science
Aligarh Muslim University, Aligarh - 202002, India

(Received January 28, 1992 and in revised form April 2, 1992)

ABSTRACT. Some results on fixed points of involution maps in 2-Banach spaces have been obtained. These are extensions of those proved earlier by Goebel-Zlotkiewicz, Sharma-Sharma, Assad-Sessa and Išekii.

KEY WORDS AND PHRASES. Involutions, 2-Banach spaces, coincidence points, fixed points.

1991 AMS SUBJECT CLASSIFICATION CODE. 54H25.

1. INTRODUCTION.

Gähler ([1]-[3]) initiated the concepts of 2-metric and 2-Banach spaces in a series of papers. These new spaces have subsequently been studied by several mathematicians in recent years. Like other spaces, the fixed point theory has also been developed in the framework of these spaces. It was Išekii ([4], [5]) who for the first time, obtained basic results on fixed points in 2-metric and 2-Banach spaces. Since then quite a number of authors have extended and generalized fixed point theorems of Išekii and various other results involving contraction type mappings. For an extensive bibliography one is referred to Išekii ([6]).

In this note, some fixed point theorems for certain involutions in 2-Banach spaces have been obtained which can be viewed as a 2-Banach space extension of a result due to Assad and Sessa [7], which in turn generalizes a fixed point theorem of Goebel and Zlotkiewicz [8] concerning an involution of a closed convex subset of a Banach space. The work of Assad and Sessa [7] was inspired by the contractive condition introduced by Delbosco [9]. Our result also generalizes a theorem of Sharma and Sharma [10]. It is important to note that in our proof continuity of the map under consideration is not essentially needed, and hence the same is unnecessarily stringent in Sharma and Sharma [10] and Išekii [5].

2. PRELIMINARIES.

We assume the familiarity with the basic theory of 2-Banach spaces as given in White [11]. But for the sake of completeness we present here some pertinent definitions.
The following notions are essentially due to Gähler [1].

DEFINITION 2.1. Let X be a linear space, and $\|\cdot\|$ be a real-valued function defined on X. Then the pair $(X, \|\cdot\|)$ is called a linear 2-normed space if, for $a, b, c \in X$,

(i) $\|a, b\| = 0$ if and only if a and b are linearly dependent,

(ii) $\|a, b\| = \|b, a\|$,

(iii) $\|a, \beta b\| = \|\beta\| \|a, b\|$, β being real,

(iv) $\|a, b + c\| \leq \|a, b\| + \|a, c\|$.

Here $\|\cdot\|$ is called a 2-norm and is a non-negative function.

DEFINITION 2.2. A sequence $\{x_n\}$ in a linear 2-normed space X is called a convergent sequence if there is an element $x \in X$ such that the $\lim_{n \to \infty} \|x_n - x, y\| = 0$ for all $y \in X$. If $\{x_n\}$ converges to x, we write $x_n \to x$ and call x the limit of $\{x_n\}$. Of course, here $\dim X \geq 2$ otherwise every sequence of points in such a space would converge to every point of the space.

DEFINITION 2.3. A sequence $\{x_n\}$ in a linear 2-normed space X is called a Cauchy sequence if $\lim_{m, n \to \infty} \|x_m - x_n, y\| = 0$ for every $y \in X$.

DEFINITION 2.4. A linear 2-normed space in which every Cauchy sequence is a convergent sequence is called a 2-Banach space.

We also need the following notion from Assad and Sessa [7].

Let Φ be the family of continuous functions $\Phi^3 \to \mathbb{R}_+$, (where \mathbb{R}_+ stands for the set of non-negative reals) satisfying the following conditions:

(i) $\phi(1, 1, 1) = k \leq 2$,

(ii) for $s \geq 0, t \geq 0$, the inequality $s \leq \phi(t, 2t, s)$ implies that $s \leq kt$.

3. RESULTS.

Throughout this section, X stands for a 2-Banach space with $\dim X \geq 2$, and I denotes the identity map on X.

THEOREM 3.1. Let T be a self-mapping of X and $\phi \in \Phi$ such that

(A) $T^2 = I$,

(B) $\|Tz - Ty, a\| \leq \phi(\|z - y, a\|, \|z - Tz, a\|, \|y - Ty, a\|)$, for all $z, y, a \in X$. Then T has at least one fixed point.

PROOF. Let x be an arbitrary point in X. Put $y = \frac{1}{2}(Tz + z)$, $z = Ty$ and $u = 2y - z$. It is easy to observe that

$2 \|Tz - y, a\| = \|z - Tz, a\| = 2 \|x - y, a\|$.

Now we have

$\|x - z, a\| = \|Tz - Ty, a\|$

$\leq \phi(\|Tz - y, a\|, \|Tz - T^2z, a\|, \|y - Ty, a\|)$

$= \phi(\|z - y, a\|, 2 \|x - y, a\|, \|y - Ty, a\|)$

and also

$\|u - z, a\| = \|2y - Ty - x, a\| = \|Tz - Ty, a\|$

$\leq \phi(\|z - y, a\|, \|z - Tz, a\|, \|y - Ty, a\|)$

$= \phi(\|z - y, a\|, 2 \|x - y, a\|, \|y - Ty, a\|)$.
On the other hand, we have

\[\| u - z, a \| = 2 \| y - Ty, a \| \]

Hence

\[\| y - Ty, a \| \leq \phi(\| x - y, a \|, 2 \| x - y, a \|, \| y - Ty, a \|) \]

By the hypothesis (ii), we obtain

\[\| y - Ty, a \| \leq k \| x - y, a \| = \frac{k}{2} \| z - Tx, a \| . \]

Let us put \(Gx = \frac{1}{2}(Tx + x) \), for any \(x \) in \(X \). Then by the foregoing inequality, we get

\[\| G^2 x - Gx, a \| = \| Gy - y, a \| \]

\[\leq \frac{k}{2} \| y - Ty, a \| \]

\[\leq \frac{k}{2} \| x - Tx, a \| \]

\[\leq \frac{k}{2} \| x - (2Gx - x), a \| \]

\[= \frac{k}{2} \| Gx - x, a \| , \]

for all \(x, a \) in \(X \).

Now, for an arbitrary point \(x_0 \) in \(X \), let \(x_n = G^n x_0 = Gx_{n-1}, n = 1, 2, \ldots \) If \(m \geq n \geq 1 \), then

\[\| x_m - x_n, a \| \leq \| G^n x_0 - G^n a, a \| \]

\[\leq \| G^n x_0 - G^n x, a \| + \cdots + \| G^n + 1 x_0 - G^n a, a \| \]

\[= \sum_{r=n}^{m-1} \left(\frac{1}{k} \right)^r \| Gx_0 - x_0, a \| \]

\[\leq \left(\frac{k}{2} \right)^r \left(1 - \frac{1}{k^2} \right) \| Gx_0 - x_0, a \| . \]

From this, it follows that \(\{x_n\} \) is a Cauchy sequence which converges in \(X \). Put \(z^* = \lim_{n \to \infty} x_n \).

Now consider

\[\| z^* - Gz^*, a \| \leq \| z^* - x_{n+1}, a \| + \| Gx_n - Gz^*, a \| \]

\[\leq \| z^* - x_{n+1}, a \| + \frac{1}{2} \| x_n - z^*, a \| + \frac{1}{2} \| Tx_n - Tx^*, a \| \]

\[\leq \| z^* - x_{n+1}, a \| + \frac{1}{2} \| x_n - z^*, a \| + \frac{1}{2} \phi(\| x_n - z^*, a \|, 2 \| Gx_n - x_n, a \|, 2 \| (z^* - Gz^*), a \|) \]

\[\leq \| z^* - x_{n+1}, a \| + \frac{1}{2} \| x_n - z^*, a \| + \frac{1}{2} \phi(\| x_n - z^*, a \|, 2 \| (z^* - Gz^*), a \|) \]

Letting \(n \to \infty \), we get

\[2 \| z^* - Gz^*, a \| \leq \phi(0, 0, 2 \| z^* - Gz^*, a \|) . \]

So again by condition (ii), we get

\[\| z - Gz^*, a \| = 0, \text{ for all } a \text{ in } X . \]

Hence, \((z^* - Gz^*) \) and \(a \) are linearly dependent for all \(a \) in \(X \). Since \(\dim X \geq 2 \), the only way \((z^* - Gz^*) \) can be linearly dependent with all \(a \) in \(X \), is that \(z^* - Gz^* = 0 \). Hence \(z^* = Tx^* \) as required. This completes the proof.
COROLLARY 3.1 (Sharma and Sharma [10]). Let $T : X \rightarrow X$ be such that $T^2 = I$ and
\begin{equation}
\|Tx - Ty, a\| \leq \alpha \|x - y, a\| + \beta (\|x - Tx, a\| + \|y - Ty, a\|),
\end{equation}
for all x, y, a in X, where $\alpha \geq 0, \beta \geq 0$ and $\alpha + 4\beta < 2$. Then T has at least one fixed point.

PROOF. The condition (3.1) implies that
\begin{equation}
\leq \left(\frac{\alpha}{2} + 2\beta \right) \max \{2\|x - y, a\|, \frac{1}{\alpha}\|x - Tx, a\| + \|y - Ty, a\|\}
\end{equation}
\begin{equation}
\leq \left(\frac{\alpha}{2} + 2\beta \right) \max \{2\|x - y, a\|, \|x - Tx, a\|, \|y - Ty, a\|\}.
\end{equation}
Now if we assume that
\begin{equation}
\phi(p, q, r) = \left(\frac{\alpha}{2} + 2\beta \right) \max \{2p, q, r\},
\end{equation}
then, by Theorem 3.1, T has at least one fixed point. This completes the proof.

REMARKS.
(a) A critical observation of the proof of the main theorem in Sharma and Sharma [10], reveals that they have used the continuity of the involution map but failed to mention the same. However, in our proof this additional condition is not required.
(b) When X is the usual Banach space, Corollary 3.1 reduced to a theorem of Iséki [5]. In a private communication Professor Iséki agreed that the continuity of the involution map is essentially needed for his proof to hold.

COROLLARY 3.2. Under the hypothesis of Theorem 3.1, suppose, in addition, that at least one of the following strict inequality holds:
\begin{equation}
\|x^* - Tx, a\| < \|x^* - y, a\| + \|x - Tx, a\|,
\end{equation}
\begin{equation}
\|x^* - x, a\| < \|x^* - Tx, a\| + \|Tx - x, a\|
\end{equation}
for all a and $x(\neq x^*)$ in X. Then x^* is the unique fixed point of T.

PROOF. By Theorem 3.1, $Tx^* = x^*$. Suppose also that $Ty^* = y^*$ for some $y^* \in X$. Assume that $x^* \neq y^*$. Then using (3.2), we have
\begin{equation}
\|y^* - Ty^*, a\| = \|y^* - Ty^*, a\| < \|x^* - y^*, a\| + \|y^* - Ty^*, a\| = \|x^* - y^*, a\|
\end{equation}
which is impossible. Therefore, $x^* = y^*$. Similarly, other condition in (3.2) also implies that $x^* = y^*$.

Now, we apply Theorem 3.1 to obtain a coincidence theorem.

THEOREM 3.2. Let T and S be the self-mappings of X, and such that the following hold:
(i) $T^2 = I, S^2 = I, TS = ST$,
(ii) $\|Tx - Ty, a\| \leq \phi(\|Sz - Sy, a\|, \|Sz - Tx, a\|, \|Sy - Ty, a\|)$, for all x, y, a in X. Then there exists at least one point x_0 in X such that $Tx_0 = Sx_0$.

PROOF. It follows from Theorem 3.1 that TS has at least one fixed point x_0. Then clearly $Tx_0 = Sx_0$. This completes the proof.

REMARK. In case, one assumes some additional conditions on TS, as in Corollary 3.2, then x_0 in Theorem 3.2 becomes the unique fixed point of TS. Then, commutativity of T, S and the uniqueness of x_0 can be used to show that x_0 is actually a common fixed point of S and T. Further, if S and T satisfies conditions similar to one in Corollary 3.2, then their common fixed point x_0 is also unique.
ACKNOWLEDGEMENT. The first author is grateful to Professor S. Sessa for supplying the preprint of [7], which motivated the present study.

REFERENCES

3. GÃ¶HLER, S., Über die uniformisierbarkeit 2-metrischer Räume, Math. Nachr. 28 (1965), 235-244.
4. IŠEKI, K., Fixed point theorems in 2-metric spaces, Maths Seminar Notes, Kobe Univ. 3 (1975), 133-136.
5. IŠEKI, K., Fixed point theorems in Banach spaces, Maths Seminar Notes, Kobe Univ. 2 (1976), 11-13.
Submit your manuscripts at http://www.hindawi.com