A GENERALIZATION OF AN INEQUALITY OF ZYGMUND

R. PERETZ
Department of Mathematics University of Michigan Ann Arbor, MI 48109

(Received October 17, 1990)

ABSTRACT. The well known Bernstein inequality states that if D is a disk centered at the origin with radius R and if $p(z)$ is a polynomial of degree n, then $\max _{z \in D}\left|p^{\prime}(z)\right| \leq \frac{n}{R} \max _{z \in D}|p(z)|$ with equality iff $p(z)=A z^{n}$. However it is true that we have the following better inequality:

$$
\max _{z \in D}\left|p^{\prime}(z)\right| \leq \frac{n}{R} \max _{z \in D}|\operatorname{Re} p(z)|
$$

with equality iff $p(z)=A Z^{n}$.
This is a consequence of a general equality that appears in Zygmund [7] (and which is due to Bernstein and Szegö): For any polynomial $p(z)$ of degree n and for any $1 \leqslant p<\infty$ we have

$$
\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i x}\right)\right|^{p_{d x}}\right\}^{1 / p} \leq A_{p} n\left\{\int_{0}^{2 \pi}\left|\operatorname{Re} p\left(e^{i x}\right)\right|_{d x} p^{1 / p}\right.
$$

where $A_{p}^{p}=\pi^{1 / 2} \frac{\Gamma\left(\frac{1}{2} p+1\right)}{\Gamma\left(\frac{1}{2} p+\frac{1}{2}\right)}$ with equality iff $p(z)=A Z^{n}$.
In this note we generalize the last result to domains different from Euclidean disks by showing the following: If $g\left(e^{i x}\right)$ is differentiable and if $p(z)$ is a polynomial of degree n then for any $1 \leq p<\infty$ we have

$$
\left\{\int_{0}^{2 \pi}\left|g\left(e^{i \theta}\right) p^{\prime}\left(g\left(e^{i \theta}\right)\right)\right|^{p_{d \theta}}\right\}^{1 / p} \leqslant A_{p} n \max _{\beta}\left\{\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{p\left(e^{i \beta_{g}} g\left(e^{i \theta}\right)\right)\right\}\right|^{p_{d \theta}}\right\}^{1 / p}
$$

with equality iff $p(z)=A z^{n}$.
We then obtain some conclusions for Schlicht Functions.

Key Vords and Phrases: Bernstein inequality, Bernstein-Szegö inequality, Krzyz problem, Dirichlet kernel, trigonometric interpolation

1980 AMS SUBJECT CLASSIFICATION CODES: 30A10, 30C10

1. INTRODUCTION.

The classical result of Bernstein as it appears in [2] is Bernstein Inequality. If D is a Euclidean disk and P is a polynomial of degree n over \mathbb{C}, then

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{D} \leq \frac{n}{\operatorname{tr}(D)}\|p\|_{D} \tag{1}
\end{equation*}
$$

where $\|f\|_{D}=\sup _{D}|f(z)|$ and $\operatorname{tr}(D)$ is the transfinite diameter of D (which is the disk's radius in this case).

This result was generalized to various directions. The following theorem appears in [1]. Let $0 \leq k \leq 1$ and let E be a closed k-quasidisk, then

THEOREM. For any polynomial P of degree n we have

$$
\begin{equation*}
\left|\frac{p\left(z_{1}\right)-p\left(z_{2}\right)}{z_{1}-z_{2}}\right| \leq c_{1} \frac{n^{1+k}}{\operatorname{tr}(E)}\|p\|_{E}, z_{1}, z_{2} \in E \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{E} \leq c_{2} \frac{n^{1+k}}{\operatorname{tr}(E)}\|p\|_{E} \tag{3}
\end{equation*}
$$

where $c_{1}=2^{-k} e\left(\frac{\pi}{4}+1\right)$ and $c_{2}=2^{-k} e$.
Another direction of generalization arises naturally in the following:
Let β be the class of all analytic functions $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ in $|z|<1$ such that $0<|f(z)|<1$. A problem posed by Krzyz [4] is to determine $A_{n}=\max _{\beta}\left|a_{n}\right|, n \geq 1 \quad$ [3]. The conjecture (which is still unsolved) is that $A_{n}=\frac{2}{e}$ and that it is attained only by rotations of

$$
g_{n}(z)=\exp \left(-\frac{z^{n}-1}{z^{n}+1}\right)
$$

Let $f(z)$ be an extremal function for A_{n}.
CONJECTURE. $|f(0)| \leq \frac{1}{e}$ and equality holds only for rotations of g_{n}.
A theorem which indicates that this conjecture may be true is:
THEOREM [5]. If $n=2 p+1$ and if $a_{1}=a_{3}=\cdots=a_{2 p-1}=0$, then $\left|a_{0}\right| \leq \frac{1}{e}$. Equality sign occurs iff $\left|a_{n}\right|=\frac{2}{e}$

The proof of this uses the following generalization of (1): Let $D(0,1)=\{z \in \mathbb{C}|z|<1\}$ and let p be any polynomial of degree n over \mathbb{C}, then

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{D(0,1)} \leq n\|\operatorname{Re} p\|_{D(0,1)} \tag{4}
\end{equation*}
$$

This follows from an inequality of Zygmund [7].
THEOREM. For any polynomial p of degree n and for any $1 \leq p<\infty$ we have

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|p^{\prime}\left(e^{i x}\right)\right|^{p_{d x}}\right\}^{1 / p} \leq A_{p} n\left\{\int_{0}^{2 \pi}\left|\operatorname{Re} p\left(e^{i x}\right)\right|^{p} d x\right\}^{1 / p} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{p}^{p}=\pi^{1 / 2} \frac{\Gamma\left(\frac{1}{2} p+1\right)}{\Gamma\left(\frac{1}{2} p+\frac{1}{2}\right)} \tag{6}
\end{equation*}
$$

and equality occurs in (5) iff $p(z)=A z^{n}$.
In this note we indicate a way to generalize (5) to domains E other than $D(0,1)$ by using the same ideas as in Zygmund's proof applied to $p \circ g$ where g is a quite general mapping $D(0,1) \rightarrow E$.

2. RESULTS.

THEOREM 1. Let g be a complex valued function of $e^{i x}, 0 \leq x \leq 2 \pi$. Suppose that $\left\{\arg g\left(e^{i x}\right) \mid 0 \leq x \leq 2 \pi\right\} \geq[0,2 \pi / n]$ and that $\frac{\operatorname{dg}\left(e^{i x}\right)}{d x}$ exists, then for any non-negative, non- decreasing convex function χ, for any $\alpha \in \mathbb{R}$ and for any polynomial P of degree n over \mathbb{C} we have

$$
\begin{equation*}
\int_{0}^{2 \pi} x\left(n^{-1}\left|\operatorname{Im}\left\{e^{i \alpha} g\left(e^{i \theta}\right) p^{\prime}\left(g\left(e^{i \theta}\right)\right)\right\}\right|\right) d \theta \leq \max _{\beta}\left\{\int_{0}^{2 \pi} \chi\left(\left|\operatorname{Re}\left\{p\left(e^{i \beta} g\left(e^{i \theta}\right)\right)\right\}\right|\right) d \theta\right\} \tag{7}
\end{equation*}
$$

equality occurs in (7) iff $p(z)=A z$.
We remark that the consequences of Theorem 1 hold true even if the condition

$$
\left\{\arg g\left(e^{i x}\right) \mid 0 \leq x \leq 2 \pi\right\} \geq[0,2 \pi / n]
$$

is dropped.
We will indicate at the end of Section 4 how to prove that.
With the notations of Theorem 1 we have

THEOREM 2. If $1 \leq p<\infty$, then

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|g\left(e^{i \theta}\right) p^{\prime}\left(g\left(e^{i \theta}\right)\right)\right|^{p} d \theta\right\}^{1 / p} \leqslant A_{p} n \max _{\beta}\left\{\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{p\left(e^{i \beta} g\left(e^{i \theta}\right)\right)\right\}\right|^{p} d \theta\right\}^{1 / p} \tag{8}
\end{equation*}
$$

with equality iff $p(z)=A z^{n}$.
As a consequence we derive an analogous theorem to (1),

THEOREM 3. If E is a simply connected domain such that $O \in E$, and if $\mathrm{G}: \mathrm{D}(0,1) \rightarrow \mathrm{E}$ is a Riemann mapping normalized by $\mathrm{G}(0)=0$, then for every $1 \leq p<\infty$ and every $0 \leq r<1$ we have

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|P^{\prime}\left(G\left(r e^{i \theta}\right)\right)\right|^{p} d \theta\right\}^{1 / p} \leq \frac{4 A_{p} n}{r\left|G^{\prime}(0)\right|} \max _{\beta}\left\{\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{P\left(e^{i \beta} G\left(r e^{i \theta}\right)\right)\right\}\right|^{p} d \theta\right\}^{1 / p} \tag{9}
\end{equation*}
$$

This last inequality is not sharp.

Returning to the function g of Theorem 1 we add
COROLLARY .

$$
\begin{align*}
& \max _{\alpha}\left\{\int_{0}^{2 \pi} \chi\left(\left|\operatorname{Im}\left\{e^{i \alpha} g\left(e^{i \theta}\right)\right\}\right|\right) \mathrm{d} \theta\right\}=\max _{\beta}\left\{\int_{0}^{2 \pi} \chi\left(\left|\operatorname{Re}\left\{\mathrm{e}^{\mathrm{i} \beta} g\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\}\right|\right) \mathrm{d} \theta\right\} \tag{10}\\
& \left\{\int_{0}^{2 \pi}\left|g\left(e^{\mathrm{i} \theta}\right)\right|^{\mathrm{p}} \mathrm{~d} \theta\right\}^{1 / \mathrm{p}} \leq \mathrm{A}_{\mathrm{p}} \max _{\beta}\left\{\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{\mathrm{e}^{\mathrm{i} \beta} g\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right\}\right|^{\mathrm{p}} \mathrm{~d} \theta\right\}^{1 / \mathrm{p}} \tag{11}
\end{align*}
$$

The last corollary can be seen directly, but, it shows that we cannot drop "max" on the right hand of the above inequalities since it is easy to find a g such that $\|\operatorname{Re} g\|_{p} \leq 1$ while $\underset{p \rightarrow \infty}{\lim \|g\|_{p}=\infty .}$

3. PREPARATIONS.

Let $p(z)=c_{0}+c_{1} z+\cdots+c_{n} z^{n}$ be a polynomial of degree n, where $c_{0} \in \mathbb{R}$. We denote

$$
\begin{equation*}
S(z)=\frac{1}{2}(p(z)+\overline{p(z)}), \quad \tilde{S}(z)=\frac{1}{2 i}(p(z)-\overline{p(z)}) \tag{12}
\end{equation*}
$$

Let g be a complex valued function of $e^{i x}, x \in \mathbb{R}$ such that $\left\{\arg g\left(e^{i x}\right) \mid 0 \leq x \leq 2 \pi\right) \supseteq\left[0, \frac{2 \pi}{n}\right]$ and such that $\frac{d g}{d x}\left(e^{i x}\right)$ exists. We denote

$$
\begin{gather*}
g\left(e^{i x}\right)=R(x) e^{i \phi(x)}, R(x)=\left|g\left(e^{i x}\right)\right|, \phi(x)=\arg g\left(e^{i x}\right) \tag{13}\\
S(x, t)=C_{0}+\sum_{v=1}^{n} R^{v}(x)\left(a_{v} \cos v t+b_{v} \sin v t\right) \tag{14}\\
\tilde{S}(x, t)= \\
\sum_{v=1}^{n} R^{v}(x)\left(a_{v} \sin v t-b_{v} \cos v t\right) \\
\quad \text { where } c_{0}, a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n} \in \mathbb{R}
\end{gather*}
$$

where the coefficients a, b are such that

$$
\begin{equation*}
S(x, \phi(x))=S\left(g\left(e^{i x}\right)\right), \tilde{S}(x, \phi(x))=\tilde{S}\left(g\left(e^{i x}\right)\right) \tag{15}
\end{equation*}
$$

As in Zygmund we denote the modified Dirichlet kernel and it's conjugate kernel by $D_{n}^{*}(u), \tilde{D}_{n}^{*}(u)$ respectively. Thus

$$
\begin{align*}
& D_{n}^{*}(u)=\frac{1}{2} \sum_{\nu=1}^{n-1} \cos \nu u+\frac{1}{2} \cos n u=\frac{\sin n u}{2 \tan \frac{1}{2} u} \tag{16}\\
& \tilde{D}_{n}^{*}(u)=\sum_{\nu=1}^{n-1} \sin v u+\frac{1}{2} \sin n u=(1-\cos n u) \frac{1}{2} \cot \frac{1}{2} u
\end{align*}
$$

We will also need the zeros of cos nt

$$
\begin{equation*}
u_{v}=(2 v-1) \pi / 2 n, v=1,2, \cdots, 2 n \tag{17}
\end{equation*}
$$

$\phi_{2 n}(t)$ will be a step function which has jumps $\frac{\pi}{n}$ at the points u_{v}. By (3.6), (3.21) on pages 10, 11 [7] we have

THEOREM (Zygmund)

$$
\begin{align*}
& S(x, u)=a_{n} R^{n}(x) \cos n u+\frac{1}{\pi} \int_{0}^{2 \pi} S(x, t) D_{n}^{*}(t-u) d \phi_{2 n}(t) \tag{18}\\
& \tilde{S}(x, u)=a_{n} R^{n}(x) \sin n u+\frac{1}{\pi} \int_{0}^{2 \pi} S(x, t) \tilde{D}_{n}^{*}(t-u) d \phi_{2 n}(t)
\end{align*}
$$

Thus for any real number α we have

$$
\begin{align*}
& S\left(g\left(e^{i x}\right)\right) \cos \alpha-\tilde{S}\left(g\left(e^{i x}\right)\right) \sin \alpha=a_{n} R^{n}(x) \cos [n \phi(x)+\alpha]+ \tag{19}\\
& +\frac{1}{\pi} \int_{0}^{2 \pi} S(x, t)\left\{\frac{\sin [n(\phi(x)-t)+\alpha]-\sin \alpha}{2 \tan \frac{1}{2}(\phi(x)-t)}\right\} d \phi_{2 n}(t)
\end{align*}
$$

4. A PROOF OF THEOREM 1.

As in Zygmund, let x_{0} be a root of $\sin [n \phi(x)+\alpha]$ such that $\cos \left[n \phi\left(x_{0}\right)+\alpha\right]=1$. We differentiate (19) with respect to x and substitute $x=x_{0}$. By (12) we have

$$
\begin{align*}
& \frac{d S}{d x}\left(g\left(e^{i x}\right)\right)=-\operatorname{Im}\left\{e^{i x} g^{\prime}\left(e^{i x}\right) p^{\prime}\left(g\left(e^{i x}\right)\right)\right\} \tag{20}\\
& \frac{d \tilde{S}}{d x}\left(g\left(e^{i x}\right)\right)=\operatorname{Re}\left\{e^{i x_{g^{\prime}}}\left(e^{i x}\right) p^{\prime}\left(g\left(e^{i x}\right)\right)\right\}
\end{align*}
$$

This takes care of the left hand side of (19). On the right hand side we first differentiate $R(x)$ and use:

$$
\begin{gather*}
\frac{R^{\prime}(x)}{R(x)}=-\operatorname{Im}\left\{\frac{e^{i x_{g}} g^{\prime}\left(e^{i x}\right)}{g\left(e^{i x}\right)}\right\}, \\
\frac{\partial}{\partial t}\{\tilde{S}(x, t)\}=\sum_{\nu=1}^{n} \nu R^{\nu}(x)\left(a_{\nu} \cos \nu t+b_{v} \sin v t\right), \\
\left.\frac{\partial \tilde{S}}{\partial t}\right|_{t=\phi(x)}=\operatorname{Re}\left\{g\left(e^{i x}\right) p^{\prime}\left(g\left(e^{i x}\right)\right)\right\}, \\
\left.\frac{\partial \tilde{S}}{\partial t}\right|_{t=\phi(x)}=\operatorname{Im}\left\{g\left(e^{i x}\right) p^{\prime}\left(g\left(e^{i x}\right)\right)\right\}, \\
-\operatorname{Im}\left\{\frac{e^{i \times g^{\prime}\left(e^{i x}\right)}}{g\left(e^{i x}\right)}\right\}\left\{\operatorname{Re}\left\{g\left(e^{i x}\right) p^{\prime}\left\{g\left(e^{i x}\right)\right)\right\} \cos \alpha-\operatorname{Im}\left\{g\left(e^{i x}\right) p^{\prime}\left(g\left(e^{i x}\right)\right)\right\} \sin \alpha\right\} \tag{21}
\end{gather*}
$$

We now differentiate $\phi(x)$ on the right hand side of (19). Using (3.22) on page 12 [7] we get

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{e^{i x_{0}} g^{\prime}\left(e^{i x_{0}}\right)}{g\left(e^{i x_{0}}\right)}\right\} \frac{1}{n} \sum_{\nu=1}^{2 n} \frac{(-1)^{\nu+1}+\sin \alpha}{4 \sin ^{2} \frac{1}{2}\left(\phi\left(x_{0}\right)-u_{\nu}\right)} S\left(x_{0}, u_{\nu}\right) \tag{22}
\end{equation*}
$$

where we have used $\phi^{\prime}\left(x_{0}\right)=\operatorname{Re}\left\{\frac{e^{i x_{0}} g^{\prime}\left(e^{i x_{0}}\right)}{g\left(e^{i x_{0}}\right)}\right\}$.
Combining (20), (21), (22) with (19) gives

$$
\begin{aligned}
& -\operatorname{Im}\left\{e^{i\left(x_{0}+\alpha\right)} g^{\prime}\left(e^{i x_{0}}\right) p^{\prime}\left(g\left(e^{i x_{0}}\right)\right)\right\}= \\
& -\operatorname{Im}\left\{\frac{e^{i x_{0}} g^{\prime}\left(e^{i x_{0}}\right)}{g\left(e^{i x_{0}}\right)}\right\} \operatorname{Re}\left\{e^{i \alpha} g\left(e^{i x_{0}}\right) p^{\prime}\left(g\left(e^{i x_{0}}\right)\right)\right\}+ \\
& +\operatorname{Re}\left\{\frac{e^{i x_{0}} g^{\prime}\left(e^{i x_{0}}\right)}{g\left(e^{i x_{0}}\right)}\right\} \frac{1}{n} \sum_{\nu=1}^{2 n} \frac{(-1)^{\nu+1}+\sin \alpha}{4 \sin ^{2} \frac{1}{2}\left(\phi\left(x_{0}\right)-u_{\nu}\right)} S\left(x_{0}, u_{\nu}\right)
\end{aligned}
$$

We now use the identity $\operatorname{Im}(A \cdot B)=\operatorname{Re}(A) \operatorname{Im}(B)+\operatorname{Im}(A) \operatorname{Re}(B)$ with

$$
\begin{align*}
& A=\frac{e^{i x_{0}} g^{\prime}\left(e^{i x_{0}}\right)}{g\left(e^{i x_{0}}\right)}, B=e^{i \alpha} g\left(e^{i x_{0}}\right) p^{\prime}\left(g\left(e^{i x_{0}}\right)\right) \text { and get finally } \\
& \quad \operatorname{Im}\left\{e^{i \alpha} g\left(e^{i x_{0}}\right) p^{\prime}\left(g\left(e^{i x_{0}}\right)\right)\right\}=-\frac{1}{n} \sum_{\nu=1}^{2 n} \frac{(-1)^{\nu+1}+\sin \alpha}{4 \sin ^{2} \frac{1}{2}\left(\phi\left(x_{0}\right)-u_{\nu}\right)} S\left(x_{0}, u_{\nu}\right) \tag{23}
\end{align*}
$$

This is a generalization of (3.22) on page 12 of [7]. Let

$$
\begin{equation*}
\beta_{v}=\left|\frac{(-1)^{\nu+1}+\sin \alpha}{4 \sin ^{2} \frac{1}{2}\left(\phi\left(x_{0}\right)-u_{v}\right.}\right|, v=1,2, \cdots, 2 n \tag{24}
\end{equation*}
$$

then

$$
\begin{equation*}
\beta_{1}+\beta_{2}+\cdots+\beta_{2 n}=n^{2} \tag{25}
\end{equation*}
$$

We use (23) with $R\left(\theta+x-x_{0}\right) e^{i\left(\phi(\theta)+\phi(x)-\phi\left(x_{0}\right)\right)}$ in place of $g\left(e^{i x}\right)$ (see (13)) and get

$$
\left.\left|\operatorname{Im}\left\{e^{i \alpha} g\left(e^{i \theta}\right) p^{\prime}\left(g\left(e^{i \theta}\right)\right)\right\} \leq \frac{1}{n} \sum_{\nu=1}^{2 n} \beta_{\nu}\right| \operatorname{Re}\left\{p\left(e^{i\left(u_{\nu}-\phi\left(x_{0}\right)\right)} g\left(e^{i \theta}\right)\right)\right\} \right\rvert\,
$$

Using the assumptions on χ, (25) and applying Jensen's inequailty we get

$$
x\left(n^{-1}\left|\operatorname{Im}\left\{e^{i \alpha} g\left(e^{i \theta}\right) p^{\prime}\left(g\left(e^{i \theta}\right)\right)\right\}\right|\right) \leq \frac{1}{n^{2}} \sum_{v=1}^{2 n} \beta_{v} \chi\left(\left|\operatorname{Re}\left\{P\left(e^{i\left(u_{v}-\phi\left(x_{0}\right)\right)} g\left(e^{i \theta}\right)\right)\right\}\right|\right)
$$

Integration with respect to θ gives (7). The equality assertion follows from Zygmund. This completes the proof of Theorem 1. a

To prove that the consequence of Theorem 1 hold true even if we drop the condition

$$
\left\{\arg g\left(e^{i x}\right) \mid 0 \leq x \leq 2 \pi\right\} \geq[0,2 \pi / n]
$$

we can use $(3,23)$ in $[7]$ with the following

$$
S(\theta)=c_{0}+\sum_{1}^{n}\left(a_{\nu} \cos \nu \theta+b_{\nu} \sin \nu \theta\right) R^{\nu} \text { where } x_{0}=-\frac{\alpha}{n}
$$

Then for $R \geq 0,0 \leq \theta, \alpha \leq 2 \pi$ we get

$$
\left|\operatorname{Im}\left(e^{i \alpha} \operatorname{Re}^{i \theta^{\prime}}\left(\operatorname{Re}{ }^{i \theta}\right)\right)\right| \leq \frac{1}{n} \sum_{1}^{2 n} \beta_{v}\left|\operatorname{Re} p\left(\operatorname{Re}{ }^{i\left(\theta+u_{k}+\frac{\alpha}{n}\right)}\right)\right|
$$

where the β_{ν} are independent of R, θ. From that we proceed as in the proof of Theorem 1 .

5. A PROOF OF THEOREM 2.

$$
\text { Let } x(t)=t^{p} \text { in (7). We get }
$$

$$
\int_{0}^{2 \pi}\left|\operatorname{Im}\left\{e^{i \alpha} g\left(e^{i \theta}\right) p^{\prime}\left(g\left(e^{i \theta}\right)\right)\right\}\right|^{p} d \theta \leq n^{p} \max _{\beta}\left\{\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{p\left(e^{i \beta} g\left(e^{i \theta}\right)\right)\right\}\right|^{p} d \theta\right\}
$$

Let $g\left(e^{i \theta}\right) p^{\prime}\left(g\left(e^{i \theta}\right)\right)=A(\theta)+i B(\theta)$ then we have

$$
\int_{0}^{2 \pi}|B(\theta) \cos \alpha+A(\theta) \sin \alpha|^{p} d \theta \leq n_{\beta}^{p} \max _{\beta}\left\{\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{P\left(e^{i \beta} g\left(e^{i \theta}\right)\right)\right\}\right|^{p} d \theta\right\}
$$

As in Zygmund we integrate this with respect to α over $0 \leq \alpha \leq 2 \pi$, change the order of integration on the left hand side and use

$$
\int_{0}^{2 \pi}|a \cos \alpha+b \sin \alpha|^{P} d \alpha=\left(a^{2}+b^{2}\right)^{P / 2} \int_{0}^{2 \pi}|\sin \alpha|^{p} d \alpha
$$

to get

$$
\begin{aligned}
\left\{\int_{0}^{2 \pi} \mid g\left(e^{i \theta}\right) p^{\prime}\right. & \left.\left.\left(g\left(e^{i \theta}\right)\right)\right|^{p} d \theta\right\}^{1 / p} \\
& \leq\left\{\frac{2 \pi}{\int_{0}^{2 \pi}|\sin \alpha|^{p} d \alpha}\right\}^{1 / p} n \max _{\beta}\left\{\int_{0}^{2 \pi}\left|\operatorname{Re}\left\{p\left(e^{i \beta} g\left(e^{i \theta}\right)\right)\right\}\right|^{p} d \theta\right\}^{1 / p}
\end{aligned}
$$

this proves (8) and completes the proof of Theorem 2. a

6. PROOFS OF THEOREM 3 AND THE COROLLARY.

By the normalization $G(0)=0$ we can use Theorem 2 with
$g\left(e^{i x}\right)=G\left(r e^{i x}\right)$. We apply Koebe's $\frac{1}{4}$-theorem [6] to get
$\frac{r\left|G^{\prime}(0)\right|}{4} \leq\left|G\left(r e^{i \theta}\right)\right|$. This bounds the left hand side of (8) from below and proves (9).
(10) follows from (7) with $p(z)=z$ applied to g and to ig.
(11) follows from (8) with $p(z)=z$. \quad.

REFERENCES

[1] Anderson, J.M., Gehring, F.W., Hinkkanen, A.: Polynomial Approximation in Quasidisks, in "Differential Geometry and Complex Analysis", edited by Chavel, I. and Farkas, H.M., Springer-Verlag, 1985. pp. 75-86.
[2] Cheney, E.W.: Introduction to approximation theory, McGraw-Hill, New York, 1966, p. 92.
[3] Hummel, J.A., Scheinberg, S., Zalcman, L.: A coefficient problem for bounded nonvanishing functions, Journal D'Analyse Math. Vol. 34 (1977), pp. 169-190.
[4] Krzyz, J.: Coefficient problem for bounded nonvanishing functions, Ann. Polon. Math. 20 (1968), p. 314.
[5] Peretz, R.: Some properties of extremal functions for Krzyz problem, accepted by J. of Complex Variables Theory and Applications.
[6] Pommerenke, Chr.: Univalent functions, Vandenhoeck and Ruprecht, Gottingen, 1975, p. 22.
[7] Zygmund, A.: Trigonometric Series, Cambridge Press, 1959, Vol. II, Chapter X.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

