ON CERTAIN CLASSES OF p-VALENT ANALYTIC FUNCTIONS

NAK EUN CHO

Department of Applied Mathematics
National Fisheries University of Pusan
Pusan 608-737
KOREA

(Received November 5, 1991)

ABSTRACT. The objective of the present paper is to introduce a certain general class $P(p,a,\beta)(p \in \mathbb{N} \{1,2,3,...\}, 0 \leq a < p$ and $\beta \geq 0)$ of p-valent analytic functions in the open unit disk \mathbb{U} and we prove that if $f \in P(p,a,\beta)$ then $J_{p,c}(f)$, defined by

$$J_{p,c}(f) = \frac{c + p}{c^{p}} \int_{0}^{1} t^{c-1} f(t) \, dt \quad (c \in \mathbb{N}),$$

belongs to $P(p,a,\beta)$. We also investigate inclusion properties of the class $P(p,a,\beta)$. Furthermore, we examine some properties for a class $T_{p}(a,\beta)$ of analytic functions with negative coefficients.

KEY WORDS AND PHRASES. p-valent analytic function, Hadamard product, integral operator, multiplier transformation, p-valently convex of order δ.

1991 AMS SUBJECT CLASSIFICATION CODE. Primary 30C45.

1. INTRODUCTION.

Let A_{p} denote the class of functions of the form

$$f(z) = z^{p} + \sum_{n=1}^{\infty} a_{n+p} z^{n+p} \quad (p \in \mathbb{N} \{1,2,3,...\})$$

which are analytic in the unit disk $\mathbb{U} = \{z : |z| < 1\}$. We also denote by S_{p} the subclass of A_{p} consisting of functions which are p-valent in \mathbb{U}.

A function $f \in A_{p}$ is said to be in the class $P(p,a)$ $(0 \leq a < p)$ if and only if it satisfies the inequality

$$\Re \left(\frac{f'(z)}{z^{p-1}} \right) > a \quad (0 \leq a < p, z \in \mathbb{U}).$$

The classes $P(1,0)$ and $P(p,0)$ were investigated by MacGregor [7] and Umezawa [11], respectively. In fact, the class $P(p,a)$ is a subclass of the class S_{p} [11].

Let f and g be in the class A_{p}, with $f(z)$ given by (1.1), and $g(z)$ defined by

$$g(z) = z^{p} + \sum_{n=1}^{\infty} \delta_{n+p} z^{n+p}.$$

The convolution or Hadamard product of f and g is defined by
For a function $f \in A_p$ given by (1.1), Reddy and Padmanabhan [10] defined the integral operator $J_{p,c}$ $(p,c \in N)$ by

$$J_{p,c}(f) = \frac{c+p}{z^p} \int_0^z t^{-1} f(t) \, dt$$

$$= z^p + \sum_{n=1}^{\infty} \frac{c+p}{c+n+p} a_n + p z^{n+p}. \quad (1.5)$$

The operator $J_{1,c}$ was introduced by Bernardi [2]. In particular, the operator $J_{1,1}$ were studied by Libera [5] and Livingston [6].

Clearly, (1.5) yields

$$f \in A_p \Rightarrow J_{p,c} \in A_p \quad (1.6)$$

Thus, by applying the operator $J_{p,c}$ successively, we can obtain

$$J_{p,c}^n(f) = \begin{cases}
J_{p,c}(J_{p,c}^{n-1}(f)) & (n \in N), \\
-f & (n = 0).
\end{cases} \quad (1.7)$$

We now recall the following definition of a multiplier transformation (or fractional integral and fractional derivative).

DEFINITION ([3]). Let the function

$$\phi(z) = \sum_{n=0}^{\infty} c_n + p z^{n+p}$$

be analytic in U and let λ be a real number. Then the multiplier transformation $I^\lambda\phi$ is defined by

$$I^\lambda\phi(z) = \sum_{n=0}^{\infty} (n + p + 1)^{\lambda} c_n + p z^{n+p} \quad (z \in U). \quad (1.9)$$

The function $I^\lambda\phi$ is clearly analytic in U. It may be regarded as a fractional integral (for $\lambda > 0$) or fractional derivative (for $\lambda < 0$) of ϕ. Furthermore, in terms of the Gamma function, we have

$$I^\lambda\phi(z) = \frac{1}{\Gamma(z)} \int_0^1 (\log t)^{\lambda-1} \phi(zt) \, dt \quad (\lambda > 0). \quad (1.10)$$

DEFINITION 2. The fractional derivative $D^\lambda\phi$ of order $\lambda \geq 0$, for an analytic function ϕ given by (1.8), is defined by

$$D^\lambda\phi(z) = I^{-\lambda}\phi(z) = \sum_{n=0}^{\infty} (n + p + 1)^{\lambda} c_n + p z^{n+p} \quad (\lambda \geq 0, z \in U). \quad (1.11)$$

Making use of Definition 2, we now introduce an interesting generalization of the class $P(p,\alpha)$ of functions in A_p which satisfy the inequality (1.2).

DEFINITION 3. A function $f \in A_p$ is said to be in the class $P(p,\alpha,\beta)$ if and only if

$$(p+1)^{-\beta} D^\beta f \in P(p,\alpha) \quad (0 \leq \alpha < p, \beta \geq 0)$$

Observe that $P(p,\alpha,0) = P(p,\alpha)$. Furthermore, since $f \in A_p$, it follows from (1.1) and (1.9) that
In particular, the class $P(1, \alpha, \beta)$ was introduced by Kim, Lee, and Srivastava [4].

2. SOME INCLUSION PROPERTIES.

In our present investigation of the general class $P(p, \alpha, \beta)$ $(0 \leq \alpha < p, \beta \geq 0)$, we need the following lemma.

LEMMA 2.1([1]). Let $M(z)$ and $N(z)$ be analytic in U, $N(z)$ map U onto a many sheeted starlike region of order γ $(0 \leq \gamma < p)$ and

$$M(0) = N(0) = 0, \quad \frac{M'(0)}{N'(0)} = p, \quad \Re \left(\frac{M'(z)}{N'(z)} \right) > \gamma.$$

Then we have

$$\Re \left(\frac{M(z)}{N(z)} \right) > \gamma \quad (0 \leq \gamma < p, p \geq 1).$$

By using Lemma 2.1, we can prove

THEOREM 2.1. Let the function $f(z)$ be in the class $P(p, \alpha, \beta)$. Then $J_{p,c}(f)$ defined by (1.5) is also in the class $P(p, \alpha, \beta)$.

PROOF. A simple calculation shows that

$$\frac{d}{dz} \left(J_{p,c}(f) \right) = \frac{c + p}{z^p + p} \int_0^z \frac{d}{dt} \left(D^\beta f(t) \right) dt \quad (2.1)$$

where the operators $J_{p,c}$ $(c \in \mathbb{N})$ and D^λ $(\lambda \geq 0)$ are defined by (1.5) and (1.11), respectively. In view of (2.1), we get

$$M(z) = \frac{c + p}{(p + 1)^p} \int_0^z t^c \frac{d}{dt} \left(D^\beta f(t) \right) dt \quad \text{and} \quad N(z) = z^p + c, \quad (2.2)$$

so that

$$\Re \left(\frac{M'(z)}{N'(z)} \right) = \Re \left(\frac{(p + 1)^{-\beta} \frac{d}{dz} D^\beta f(z)}{z^{p-1}} \right). \quad (2.3)$$

Since, by hypothesis, $f \in P(p, \alpha, \beta)$, the second member of (2.3) is greater than α, and hence

$$\Re \left(\frac{M'(z)}{N'(z)} \right) > \alpha \quad (0 \leq \alpha < p). \quad (2.4)$$

Thus, by Lemma 2.1, we have

$$\Re \left(\frac{M(z)}{N(z)} \right) = \Re \left(\frac{(p + 1)^{-\beta} \frac{d}{dz} J_{p,c}(f)}{z^{p-1}} \right) > \alpha \quad (0 \leq \alpha < p, \beta \geq 0), \quad (2.5)$$

which completes the proof of Theorem 2.1.

Let $f \in A_p$ be given by (1.1). Suppose also that
\[F_m(f) = J_{p,c_1}\left(\cdots \left(J_{p,c_m}(f)\right)\right) \]
\[= z^p + \sum_{n=1}^{\infty} \frac{(c_1 + p)\cdots (c_m + p)}{(c_1 + p + n)\cdots (c_m + p + n)} \frac{a_{n+p}}{z^{n+p}} \quad (c_j \in \mathbb{N}(j = 1, \ldots, m), m \in \mathbb{N}). \]

(2.6)

Then, by Theorem 2.1, we have

COROLLARY 2.1. Let the function \(f(z) \) be in the class \(P(p,\alpha,\beta) \). Then the function \(F_m(f) \) defined by (2.6) is also in the class \(P(p,\alpha,\beta) \).

The next inclusion property of the class \(P(p,\alpha,\beta) \), contained in Theorem 2.2 below, would involve the operator \(J_{p,1}^\lambda(\lambda > 0) \) defined by

\[J_{p,1}^\lambda(f) = (1 + p)^{\lambda} I_{1}^{\lambda} f(z) \]
(\(\lambda > 0, f \in A_p \)).

(2.7)

For \(\lambda = m \in \mathbb{N} \), we have

\[J_{p,1}^m(f) = (1 + p)^{m} I_{1}^{m} f(z) \]
\[= \frac{(1 + p)^{m}}{(m - 1)!} \int_0^1 (\log t)^{m-1} f(t) dt. \]

(2.8)

Clearly, we have

\[f \in A_p \Rightarrow J_{p,1}^\lambda(f) \in A_p \]
(\(\lambda > 0 \)).

(2.9)

THEOREM 2.2. Let the function \(f(z) \) be in the class \(P(p,\alpha,\beta) \). Then the function \(J_{p,1}^\lambda(\lambda > 0) \) defined by (2.7) is also in the class \(P(p,\alpha,\beta) \).

PROOF. Making use of (1.9) and (1.11), the definition (2.7) yields

\[(p + 1)^{-\beta} D^\beta (J_{p,1}^\lambda(f)) = J_{p,1}^\lambda((p + 1)^{-\beta} D^\beta f) \]
(\(\beta \geq 0, \lambda > 0, f \in A_p \)).

(2.10)

Therefore, setting

\[g(z) = (p + 1)^{-\beta} D^\beta f \]
and \(G(z) = J_{p,1}^\lambda(g) \),

we must show that

\[\text{Re}\left\{ \frac{G'(z)}{z^{\lambda - 1}} \right\} > 0 \quad (0 < \alpha < p) \]

(2.12)

whenever \(f \in P(p,\alpha,\beta) \).

From the integral representation in (1.10), we obtain

\[G'(z) = \frac{(p + 1)^\lambda}{\Gamma(\lambda)} \int_0^1 (\log t)^{\lambda-1} g'(zt) dt \]
(\(\lambda > 0 \)).

(2.13)

so that

\[\text{Re}\left\{ \frac{G'(z)}{z^{\lambda - 1}} \right\} = \frac{(p + 1)^\lambda}{\Gamma(\lambda)} \int_0^1 (\log t)^{\lambda-1} t^{\lambda - 1} \text{Re}\left\{ \frac{g'(zt)}{(zt)^{p-1}} \right\} dt \]
(\(\lambda > 0 \)).

(2.14)

Since \(f \in P(p,\alpha,\beta) \), we have

\[\text{Re}\left\{ \frac{g'(zt)}{(zt)^{p-1}} \right\} > 0 \quad (0 < \alpha < p, 0 \leq t \leq 1). \]

(2.15)
CERTAIN CLASSES OF p-VALENT ANALYTIC FUNCTIONS 323

and hence (2.14) yields

\[\text{Re}\left\{ \frac{G'(z)}{z^p-1} \right\} = \frac{(p+1)^\alpha}{\Gamma(\lambda)} \int_0^1 (\log \frac{1}{t+1})^{\lambda-1} t e^{-\lambda-1} t dt = \alpha \]

(0 ≤ α < p, λ > 0), \hspace{1cm} (2.16)

which completes the proof of Theorem 2.2.

COROLLARY 2.2. If 0 ≤ α < p and 0 ≤ β < γ, then \(P(p, \alpha, \gamma) \subset P(p, \alpha, \beta) \).

PROOF. Setting \(\lambda = \gamma - \beta > 0 \) in Theorem 2.2, we observe that

\[f \in P(p, \alpha, \gamma) \Rightarrow J_{p,1}^{-\beta}(f) \in P(p, \alpha, \gamma) \]

\[\Leftrightarrow (p+1)^{-\beta} D^\gamma (J_{p,1}^{-\beta}(f)) \in P(p, \alpha) \]

\[\Leftrightarrow (p+1)^{-\beta} D^\beta f \in P(p, \alpha) \]

\[\Leftrightarrow f \in P(p, \alpha, \beta), \]

and the proof of Corollary 2.2 is completed.

Next we define a function \(h \in A_p \) by

\[h(z) = z^p + \sum_{n=1}^{\infty} \left(\frac{n+p+1}{p+1} \right) z^n \]

(\(z \in U \)). \hspace{1cm} (2.18)

Then, in terms of the Hadamard product defined by (1.4), we have

\[(h \ast f)(z) = \frac{1}{p+1} \{ f(z) + zf'(z) \} \]

which, when compared with (1.11) with \(m = 1 \), yields

\[(h \ast f)(z) = \frac{1}{p+1} D^1 f. \]

We now need the following lemma for another inclusion property of the class \(P(p, \alpha, \beta) \).

LEMMA 2.2([8]). Let \(\varphi(u, v) \) be a complex valued function such that

\(\varphi: D \rightarrow \mathbb{C}, \)

(\(D \subset \mathbb{C} \times \mathbb{C} (C \text{ is the complex plane}) \)),

and let \(u = u_1 + iu_2, \ v = v_1 + iv_2 \). Suppose that the function \(\varphi(u, v) \) satisfies

(i) \(\varphi(u, v) \) is continuous in \(D \),

(ii) \((1,0) \in D \) and \(\text{Re}\{\varphi(1,0)\} > 0 \),

(iii) for all \((iu_2, v_1) \in D \) such that \(v_1 \leq -\frac{1+u_2^2}{2}, \quad \text{Re}\{\varphi(iu_2, v_1)\} \leq 0 \).

Let \(p(z) = 1 + p_1 z + p_2 z^2 + \ldots \) be analytic in the unit disk \(U \) such that \((p(z), zp'(z)) \in D \) for all \(z \in U \). If

\[\text{Re}\{\{p(z), zp'(z)\}\} > 0 \quad (z \in U), \]

then \(\text{Re}\{p(z)\} > 0 (z \in U) \).

THEOREM 2.3. If 0 ≤ α < p and β ≥ 0, then

\[P(p, \alpha, \beta + 1) \subset P(p, \mu, \beta) \quad (\mu = \frac{2\alpha(p+1)+p}{2(p+1)+1}). \]

PROOF. Let the function

\[F(z) = \frac{1}{p+1} \{ f(z) + zf'(z) \} \]

(\(f \in A_p \)). \hspace{1cm} (2.22)

First, we shall show that
\[
\text{Re}\left\{ \frac{f'(z)}{z^{p-1}} \right\} > \frac{2\alpha(p+1) + p}{2(p+1) + 1} \quad (0 \leq \alpha < p, z \in U), \tag{2.23}
\]

whenever
\[
\text{Re}\left\{ \frac{F'(z)}{z^{p-1}} \right\} > \alpha \quad (0 \leq \alpha < p, z \in U). \tag{2.24}
\]

By the differentiation of \(F(z) \), we obtain
\[
F'(z) = \frac{1}{p+1} [2f'(z) + zf''(z)]. \tag{2.25}
\]

We define the function \(p(z) \) by
\[
F'(z) = \frac{f'(z)}{p^{p-1}} = \gamma + (1 - \gamma)p(z) \tag{2.26}
\]

with \(\gamma = \frac{2\alpha(p+1) + p}{2(p+1) + 1} \) (0 \leq \gamma < 1). Then \(p(z) = 1 + p_1 z + p_2 z^2 + \ldots \) is analytic in \(U \). By using (2.25) and (2.26), we obtain
\[
\text{Re}\left\{ \frac{F'(z)}{z^{p-1}} \right\} > \alpha \quad (0 \leq \alpha < p), \tag{2.27}
\]

Hence, in view of \(\text{Re}\left\{ \frac{F'(z)}{z^{p-1}} \right\} > \alpha \), we have
\[
\text{Re}\left\{ \phi(p(z), zp'(z)) \right\} > 0, \tag{2.28}
\]

where \(\phi(u,v) \) is defined by
\[
\phi(u,v) = \frac{1}{p+1} ((p^2 + p)(\gamma + (1 - \gamma)u) + p(1 - \gamma)v) - \alpha \tag{2.29}
\]

with \(u = u_1 + iu_2 \) and \(v = v_1 + iv_2 \). Then we see that
(i) \(\phi(u,v) \) is continuous in \(D = C \times C \),
(ii) \((1,0) \in D \) and \(\text{Re}\{\phi(1,0)\} = p - \alpha > 0 \),
(iii) for all \((iu_2,v_1)\in D\) such that \(v_1 \leq -\frac{(1 + u_2^2)}{2} \),
\[
\text{Re}\{\phi(iu_2,v_1)\} = \frac{1}{p+1} ((p^2 + p)\gamma + p(1 - \gamma)v) - \alpha \\
\begin{align*}
&\leq \frac{1}{p+1} \left((p^2 + p)\gamma - p(1 - \gamma)\frac{(1 + u_2^2)}{2} \right) - \alpha \leq 0
\end{align*}
\]

for \(\gamma = \frac{2\alpha(p+1) + p}{2(p+1) + 1} \). Consequently, \(\phi(u,v) \) satisfies the conditions in Lemma 2.2. Therefore, we have
\[
\text{Re}\left\{ \frac{f'(z)}{z^{p-1}} \right\} > p\gamma = \frac{2\alpha(p+1) + p}{2(p+1) + 1}. \tag{2.30}
\]

Next, in view of (2.20) and above arguments, we have
\[
f \in P(p,\alpha,\beta+1) \Leftrightarrow (p+1)^{-\beta}D^{\beta+1}f \in P(p,\alpha) \\
\Rightarrow h \ast ((p+1)^{-\beta}D^{\beta+1}f) \in P(p,\alpha) \\
\Rightarrow (p+1)^{-\beta}D^{\beta+1}f \in P(p,\mu) \quad (\mu = \frac{2\alpha(p+1) + p}{2(p+1) + 1}) \\
\Leftrightarrow f \in P(p,\mu,\beta), \tag{2.31}
\]

which evidently proves Theorem 2.3.
REMARK. Since $0 \leq \alpha < p$, we have

$$\mu = \frac{2\alpha(p+1) + p}{2(p+1)} > \alpha,$$

and hence $P(p, \mu, \beta) \subset P(p, \alpha, \beta)$.

3. THE CONVERSE PROBLEM.

Let T_p denote the class of functions of the form

$$f(z) = z^p - \sum_{n=1}^{\infty} a_{n+p} z^{n+p} \quad (p \in \mathbb{N} = \{1, 2, 3, \ldots\}, a_{n+p} \geq 0)$$

which are analytic in U and let $T_p(a, \beta) = T_p \cap P(p, a, \beta)$.

In this section, we investigate the converse problem of integrals defined by (1.5) for the class $T_p(a, \beta)$.

LEMMA 3.1. Let $f \in T_p$. Then $f \in T_p(a, \beta)$ if and only if

$$\sum_{n=1}^{\infty} (n+p)^{(n+p+1)} a_{n+p} \leq p - \alpha. \quad (3.1)$$

PROOF. Suppose that

$$\sum_{n=1}^{\infty} (n+p)^{(n+p+1)} a_{n+p} \leq p - \alpha.$$

It is sufficient to show that the values for $\frac{(p+1)^{-\beta}(D^\beta f)'_z^{p-1}}{z^p}$ lie in a circle centered at p whose radius is $p - \alpha$. Indeed, we have

$$\left| \frac{(p+1)^{-\beta}(D^\beta f)'_z^{p-1}}{z^p} - p \right| = \left| - \sum_{n=1}^{\infty} (n+p)^{(n+p+1)} a_{n+p} z^n \right|$$

$$\leq \sum_{n=1}^{\infty} (n+p)^{(n+p+1)} a_{n+p} |z|^n$$

$$< \sum_{n=1}^{\infty} (n+p)^{(n+p+1)} a_{n+p} \leq p - \alpha. \quad (3.2)$$

Conversely, assume that

$$Re\left\{ \frac{(p+1)^{-\beta}(D^\beta f)'_z^{p-1}}{z^p} \right\} > \alpha (0 \leq \alpha < p) \quad (3.3)$$

which is equivalent to

$$Re\left\{ \sum_{n=1}^{\infty} (n+p)^{(n+p+1)} a_{n+p} z^n \right\} < p - \alpha. \quad (3.4)$$

Choose values of z on the real axis so that

$$\sum_{n=1}^{\infty} (n+p)^{(n+p+1)} a_{n+p} z^n$$

is real. Letting $z \to 1$ along the real axis, we obtain

$$\sum_{n=1}^{\infty} (n+p)^{(n+p+1)} a_{n+p} \leq p - \alpha.$$

The proof is completed.
THEOREM 3.1. Let $F \in T_p(\alpha, \beta)$ and $f(z) = \left[\frac{1-c}{p+c}\right] [z^c F(z)]^\delta$ $(c \in \mathbb{N})$. Then the function $f(z)$ belongs to the class $T_p(\delta, \beta)$ $(0 \leq \delta < p)$ for $|z| < r$, where

$$r = \inf_{n \geq 1} \left[\frac{(p-\delta)(p+c)}{(p-\alpha)(n+p+c)}\right]^\frac{1}{n}.$$

(3.5) The result is sharp.

PROOF. Let $F(z) = z^p - \sum_{n=1}^{\infty} a_{n+p} z^n + p$. Then it follows from (1.5) that

$$f(z) = \frac{1-c}{p+c} \frac{d}{dz} [z^c F(z)] = z^p - \sum_{n=1}^{\infty} \left(\frac{n+p+c}{p+c}\right) a_{n+p} z^n.$$

(3.6) To prove the result, it suffices to show that

$$\left|\frac{(p+1)^{-\beta}(D^2f)'}{z^{p-1}} - p\right| \leq p-\delta$$

(3.7) for $|z| \leq r$. Now

$$\left|\frac{(p+1)^{-\beta}(D^2f)'}{z^{p-1}} - p\right| = - \sum_{n=1}^{\infty} (n+p+1)^\delta \left(\frac{n+p+c}{p+c}\right) a_{n+p} |z|^n.$$

(3.8) Thus we have

$$\left|\frac{(p+1)^{-\beta}(D^2f)'}{z^{p-1}} - p\right| \leq p-\delta$$

(3.9) if

$$\sum_{n=1}^{\infty} (n+p+1)^\delta \left(\frac{n+p+c}{p+c}\right) a_{n+p} |z|^n \leq p-\delta.$$

(3.10) But Lemma 3.1 confirms that

$$\sum_{n=1}^{\infty} (n+p+1)^\delta a_{n+p} \leq p-\alpha.$$

(3.11) Therefore (3.10) will be satisfied if

$$\left(\frac{n+p}{p-\delta}\right) \left(\frac{n+p+c}{p+c}\right) |z|^n \leq \left(\frac{n+p}{p-\alpha}\right)$$

(3.12) for each $n \in \mathbb{N}$, or if

$$|z| \leq \left[\frac{p-\delta}{p-\alpha}\left(\frac{p+c}{n+p+c}\right)^{\frac{1}{n}}.$$

(3.13) The required result follows now from (3.13). Sharpness follows if we take

$$F(z) = z^p - \left(\frac{p-\alpha}{n+p}\right)^\delta a_{n+p} z^n + p$$

(3.14) for each $n \in \mathbb{N}$.

THEOREM 3.2. Let $F \in T_p(\alpha, \beta)$ and $f(z) = \left[\frac{1-c}{p+c}\right] [z^c F(z)]^\delta$ $(c \in \mathbb{N})$. Then the function $f(z)$ p-valently convex of order δ $(0 \leq \delta < p)$ in the disk...
\[|z| < r^* = \inf_{n \geq 1} \left[\frac{\frac{p(p - \delta)}{(n + p + \delta)(p - \alpha)} \left(\frac{n + p + c}{p + c} \right)^{n + p + 1}}{(n + p + \delta)(p - \alpha)} \left(\frac{n + p + 1}{p + 1} \right)^{n + p + \frac{1}{n}} \right]. \] (3.15)

The result is sharp.

PROOF. To prove the theorem, it is sufficient to show that
\[\left| 1 + \frac{zf''(z)}{f'(z)} \right| - p \leq p - \delta \] (3.16)
for \(|z| \leq r^*\). In view of (3.6), we have
\[\frac{-1}{p - \sum_{n=1}^{\infty} n(n+p)(n+p+c) a_{n+p} n^{n+p} z^{n+p-1}} \leq \frac{-1}{p - \sum_{n=1}^{\infty} n(n+p)(n+p+c) a_{n+p} n^{n+p} z^{n+p-1}} \]
(3.17)
Thus
\[\left| 1 + \frac{zf''(z)}{f'(z)} \right| - p \leq p - \delta \] (3.18)
if
\[\frac{-1}{p - \sum_{n=1}^{\infty} n(n+p)(n+p+c) a_{n+p} n^{n+p} z^{n+p-1}} \leq p - \delta. \] (3.19)
or
\[\sum_{n=1}^{\infty} \frac{n(n+p)(n+p+c)}{p(p - \delta)} \left(\frac{n + p + c}{p + c} \right)^{n + p + \frac{1}{n}} a_{n+p} n^{n+p} z^{n+p-1} \leq 1. \] (3.20)

But from Lemma 3.1, we obtain
\[\sum_{n=1}^{\infty} \frac{n(n+p)(n+p+c)}{p(p - \delta)} \left(\frac{n + p + 1}{p + 1} \right)^{n + p + \frac{1}{n}} a_{n+p} \leq 1. \] (3.21)
Hence \(f(z) \) is \(p \)-valent convex of order \(\delta \) (\(0 \leq \delta < p \)) if
\[\frac{n(n+p)(n+p+c)}{p(p - \delta)} \left(\frac{n + p + c}{p + c} \right) |z|^{n} \leq \left(\frac{n + p}{p - \delta} \right) \left(\frac{n + p + 1}{p + 1} \right)^{\frac{1}{n}}, \] (3.22)
or
\[|z| \leq \left[\frac{p(p - \delta)}{(n + p + \delta)(p - \alpha)} \left(\frac{p + c}{n + p + c} \right) \left(\frac{n + p + 1}{p + 1} \right)^{\frac{1}{n}} \right]. \] (3.23)
for each \(n \in \mathbb{N} \). This completes the proof of the theorem. The result is sharp for the function given by (3.14).

REFERENCES

Submit your manuscripts at
http://www.hindawi.com