NOTE ON POINTWISE CONTRACTIVE PROJECTIONS

L.M. SANCHEZ RUIZ and J.R. FERRER VILLANUEVA
Departamento de Matemática Aplicada
Universidad Politécnica de Valencia
46071 Valencia
Spain

(Received April 16, 1992)

ABSTRACT: Let \(C(X) \) be the space of real-valued continuous functions on a Hausdorff completely regular topological space \(X \), endowed with the compact-open topology. In this paper necessary and sufficient conditions are given for a subspace of \(C(X) \) to be the range of a pointwise contractive projection in \(C(X) \).

KEY WORDS AND PHRASES: Contractive projection, extreme point.

Several authors have considered the problem of characterizing the subspaces of \(C(K) \) admitting contractive projections, \(K \) being a compact Hausdorff space (cf. Lindestrauss [1], Lindestrauss-Wulbert [2] and Lindberg [3]). And when \(X \) is a Hausdorff completely regular topological space with a fundamental sequence of compact sets, we have discussed in [4] conditions for a subspace \(E \) of \(C(X) \) to be the range of a compact contractive projection in \(C(X) \). In this note we want to study the problem that arises when the projection \(p \) of \(C(X) \) onto \(E \) is pointwise contractive, i.e., when for each \(x \in X \) it is \(|p(f)(x)| \leq |f(x)| \) for every \(f \in C(X) \).

Hereafter \(X \) will stand for any Hausdorff completely regular topological space and \(C(X) \) for the space of the continuous real-valued functions on \(X \) endowed with the compact-open topology. Given a linear subspace \(E \) of \(C(X) \) and \(x \in X \), we set \(E_x = \{ f \in E : |f(x)| \leq 1 \} \) and \(C_x = \{ f \in C(X) : |f(x)| \leq 1 \} \), holding \(E_x^* \) and \(C_x^* \) for their polar sets in the topological dual spaces of \(E \) and \(C(X) \), respectively. \(E \) is called separating if for each \(x, y \in X \), \(x \neq y \), there is some \(f \in E \) such that \(f(x) \neq f(y) \). For each \(x \in X \), \(\delta_x \) will denote the linear form of \((C(X))^* \) such that \(\delta_x(f) = f(x) \forall f \in C(X) \). If \(A \) is a subset of \((C(X))^* \), \(x \) is called an extreme point of \(A \) if \(x \neq \lambda x + (1-\lambda)y \) with \(0 < \lambda < 1 \), \(x, y \in A \), implies that \(z = x + y \). Given \(x \in X \), \(x \) is a double point of \(E \) if there is some \(y_x \in X \) such that \(f(x) + f(y_x) = 0 \) for every \(f \in E \). We shall say \(x \) is an autodouble point if \(f(x) = 0 \) for every \(f \in E \), i.e., if \(x \) is a double point and \(y_x = x \). If \(x \) is not a double point, \(x \) is called a single point. If \(E \) is separating and \(x \) is a double point then \(y_x \) is unique, there being at most only one autodouble point. Clearly, there are no double points if \(E \) contains the constant functions.

LEMMA. Let \(E \) be a separating linear subspace of \(C(X) \). For each \(x \in X \), \(\pm \delta_x \) are the only extreme points of \(E_x^* \).

PROOF. Clearly the \(\sigma(E,E) \)-closed convex cover of \(F = (\delta_x, -\delta_x) \) is contained in \(E_x^* \) and if \(\varphi \notin C_F^* \) there must be some \(f \in E \) such that \(\varphi(f) > 1 \) and \(|f(x)| \leq 1 \), i.e., \(\varphi \notin E_x^* \). On the other hand \(E_x^* \) has some extreme point, since it is weakly compact, and it will be contained in \(F \). Hence \(\pm \delta_x \) are the only extreme points of \(E_x^* \).
PROPOSITION. Let E be a separating subspace of $C(X)$ and p a pointwise contractive projection of $C(X)$ onto E. Then for each $x \in X$, the transpose linear mapping p^* of p satisfies:

i) $p^*(\delta_x) = 0$ if x is an autodouble point.

ii) $p^*(\delta_x) = \delta_x$ if x is not an autodouble point.

PROOF. i) For each $f \in C(X)$, $p^*\delta_x(f) = \delta_x(pf) = (pf)(x) = 0$ since $pf \in E$. Hence $p^*(\delta_x) = 0$.

ii) Let $E(x)$ be the set of all $\varphi \in C^*_{x}$ such that $\varphi = \delta_x(f)$ for some $f \in C_x$ where C_x is the closed convex hull of the extreme points of C^*_{x}. By Krein-Millman's theorem, $E(x)$ coincides with the closed convex hull of its extreme points. Now $p^*\delta_x \in E(x)$ since for each $g \in C^*_x$, $\|p^*\delta_x(g)\| = \|\delta_x(pg)\| = \|pg(x)\|$ is an autodouble point.

Let $E(x) = \{\varphi \in C^*_x \mid \varphi = \delta_x(f)\}$ and $\delta_x = p^*\varphi$. By the closed graph theorem, $E(x)$ is a closed linear subspace of C^*_x. Moreover, for each $x \in X$, $\delta_x = \delta_x(f)$ for some $f \in C_x$.

THEOREM 1. Let E be a separating subspace of $C(X)$ and p a pointwise contractive projection of $C(X)$ onto E. Then:

i) If for each $x \in X$ there is some $f \in E$ such that $f(x) \neq 0$, every point of X is single.

ii) If there is some $x \in X$ such that $f(x) = 0$ for each $f \in E$, x is the only double point of X. Moreover, x is isolated and, clearly, autodouble.

THEOREM 2. A locally convex topological vector space E is isomorphic to the range of a pointwise contractive projection in $C(X)$ if and only if E is isomorphic to either $C(X)$ or some C^*_x.

PROOF. Assume E is separating. If each point $x \in X$ is single, $p^*\delta_x = 0$ for every $x \in X$. On the other hand, if there exists some double point x, E is contained in C^*_x. But for each $x \in X$, $p^*\delta_x = 0$ and $p^*\delta_x(f) = f(x)$ for $x \neq x$. If E is not separating, we are able to form the quotient by identifying those points which are not separated by E and the same conclusion yields.

Conversely, if E is isomorphic to some C^*_x, then the mapping $p : C(X) \rightarrow C^*_x$ defined by $p(f) = f_x$, where $f_x(x) = f(x)$ for $x \neq x$ and $f_x(x) = 0$, is pointwise contractive and $p^* = f$ for each $f \in C^*_x$. (Refer to [1], [2], [3], [4], [5])

REFERENCES

Submit your manuscripts at http://www.hindawi.com