SEMIPRIME SF-RINGS WHOSE ESSENTIAL LEFT IDEALS ARE TWO-SIDED

ZHANG JULE and DU XHIANNENG
Anhui Normal University
Wuhu 241000, P.R. of China

(Received April 21, 1992)

ABSTRACT. It is proved that if R is a semiprime ELT-ring and every simple right R-module is flat then R is regular. Is R regular if R is a semiprime ELT-ring and every simple right R-module is flat? In this note, we give a positive answer to the question.

KEY WORDS AND PHRASES. (Von Neumann) regular ring, SF-ring, ELT-ring.

1991 AMS SUBJECT CLASSIFICATION CODE. 16A30.

1. INTRODUCTION.

In [1] Yue Chi Ming proposed the following question: Is R regular if R is a semiprime ELT-ring and every simple right R-module is flat? In this note, we give a positive answer to the question.

All rings considered in this paper are associative with identity, and all modules are unital. A ring R is (Von Neumann) regular provided that for every $a \in R$ there exists $b \in R$ such that $a = aba$ (see [2]). R is called a strongly regular ring if for each $a \in R, a \in a^2 R$. Following [1], call R and ELT-ring if every essential left ideal is an ideal of R. We call R a right SF-ring if every simple right R-module is flat (see [3]).

2. MAIN RESULTS.

We begin by stating following lemmas which will be used in proof of our main result.

LEMMA 1. ([4], p.30, Exercise 19) If R is a semiprime ring, then $\text{Soc}(R) = \text{Soc}(R)$.

LEMMA 2. ([5], Corollary 8.5) If R is a semiprime ring, then every minimal left (right) ideal is generated by an idempotent.

LEMMA 3. ([3], Proposition 3.2) Let R be a left (right) SF-ring. If I is an ideal of R, then R/I also is a left (right) SF-ring.

LEMMA 4. ([3], Theorem 4.10) Let R be a left (right) SF-ring. If every maximal right (left) ideal of R is an ideal, then R strongly regular.

LEMMA 5. If R is a semiprime ELT and right SF-ring, then R is fully left (right) idempotent.

PROOF. From Lemma 1, $\text{Soc}(R) = \text{Soc}(R)$. Now we write S instead of $\text{Soc}(R)$. By Lemma 2, S is fully left (right) idempotent. Since R is an ELT-ring, and every maximal left ideal of R/S is an image of a maximal essential left ideal of R under the natural map $v: R \rightarrow R/S$, hence every maximal left ideal of R/S is an ideal. By Lemma 3, R/S is a right SF-ring. It follows from Lemma 4 that R/S is strongly regular, whence R/S is fully left (right) idempotent.

Now we prove our main result which gives a positive answer to the question raised in [1].
THEOREM 2.1. If R is a semiprime ELT and right SF-ring, then R is regular.

PROOF. From Lemma 5, R is a fully left (right) idempotent ring. If P is a prime ideal of R, then it is easy to know that R/P is a fully right idempotent ring. Since R is ELT, this implies that R/P is an ELT-ring. By (see [6], Corollary 6), R/P is regular. Considering that R is fully idempotent, thus R is a regular ring (see [2], Corollary 1.18).

ACKNOWLEDGEMENT. This research was supported by Anhui Education Council of China.

REFERENCES

Submit your manuscripts at
http://www.hindawi.com