COMMON FIXED POINT THEOREMS FOR SEQUENCES OF FUZZY MAPPINGS

B.S. LEE

Department of Mathematics
Kyungsung University
Pusan 608-736, Korea

and

S.J. CHO

Department of Natural Sciences
Pusan National University of Technology
Pusan 608-739, Korea

(Received July 13, 1992 and in revised form February 15, 1993)

ABSTRACT. In this paper, we define g-contractive and g-contractive type fuzzy mappings and prove common fixed point theorems for sequences of fuzzy mappings on a complete metric linear space.

KEY WORDS AND PHRASES. Contractive-type fuzzy mapping, g-contractive fuzzy mapping, g-contractive type fuzzy mapping, fixed point, common fixed point.

1991 AMS SUBJECT CLASSIFICATION CODE. 54H25.

1. INTRODUCTION.

Fixed point theorems for fuzzy mappings were studied by Bose-Sahani, Butnariu, and others ([1]-[3]; [5]-[6]; [8]-[9]; [16]-[17]). While Weiss [17] studied a fixed point theorem for fuzzy sets, which is a fuzzy analogue of the Schauder-Tychonoff’s fixed point theorem, Heilpern [9] obtained a fixed point theorem for fuzzy contraction mappings which is a fuzzy analogue of the fixed point theorems for multi-valued mappings ([7], [10], [15]) and the well-known Banach fixed point theorem. A fixed point theorem for contractive type fuzzy mappings which is a generalization of the Heilpern’s result was given in [14]. In this paper, we define g-contractive and g-contractive type fuzzy mappings which are fuzzy analogues of g-contractive and g-contractive type mappings respectively ([11], [12]). For a mapping g of a complete metric linear space (X, d) into itself and a sequence (Fi)i∈[1,∞] of fuzzy mappings of X into W(X), we consider the following conditions (•) and (**);

• there exists a constant k with 0 ≤ k < 1 such that for each pair of fuzzy mappings F_i, F_j:X→W(X), D(F_i(x), F_j(y)) ≤ kd(g(x), g(y)) for all x, y ∈ X,

•• there exists a constant k with 0 ≤ k < 1 such that for each pair of fuzzy mappings F_i, F_j:X→W(X) and for any x ∈ X, {uz} ⊂ F_i(x) implies that there is {vy} ⊂ F_j(y) for all y ∈ X with D({uz}, {vy}) ≤ kd(g(x), g(y)).

We show that a sequence with the condition (•) satisfies the condition (••), that a sequence
with the condition \((***)\) has a common fixed point and consequently that a sequence with the condition \((*)\) has a common fixed point. These results are fuzzy analogues of common fixed point theorems for sequences of \(g\)-contractive and \(g\)-contractive type multi-valued mappings [11]. Consequently, we obtain as corollaries fixed point theorems for contractive fuzzy mappings [9] and contractive-type fuzzy mappings [14].

2. PRELIMINARIES.

We review briefly some definitions and terminologies needed ([4], [9], [16]). Let \((X,d)\) be a metric linear space (i.e., a complex or real vector space). A fuzzy set \(A\) in \(X\) is a function with domain \(X\) and values in \([0,1]\). (In particular, if \(A\) is an ordinary (crisp) subset of \(X\), its characteristic function \(\chi_A\) is a fuzzy set with domain \(X\) and values \([0,1]\)). Especially \([x]\) is a fuzzy set with membership function equal to a characteristic function of the set \([x]\). The \(\alpha\)-level set of \(A\), denoted by \(A_\alpha\), is defined by

\[A_\alpha = \{x : A(x) \geq \alpha\}\] where \(B\) denotes the closure of the (nonfuzzy) set \(B\). \(W(X)\) denotes the collection to all fuzzy sets \(A\) in \(X\) such that (i) \(A_\alpha\) is compact and convex in \(X\) for each \(\alpha \in [0,1]\) and (ii) \(\sup_{x \in X} A(x) = 1\). For \(A, B \in W(X)\), \(A \subseteq B\) means \(A(x) \leq B(x)\) for each \(x \in X\).

DEFINITION 2.1. Let \(A, B \in W(X)\). Then a metric \(D\) on \(W(X)\) is defined by

\[D(A, B) = \sup_{\alpha \in [0,1]} D(A_\alpha, B_\alpha)\] where \(H\) is the Hausdorff metric in the collection \(CP(X)\) of all nonempty compact subsets of \(X\).

DEFINITION 2.2. Let \(X\) be an arbitrary set and \(Y\) be any metric linear space. \(F\) is called a fuzzy mapping iff \(F\) is a mapping from the set \(X\) into \(W(Y)\).

A fuzzy mapping \(F\) is a fuzzy subset on \(X \times Y\) with a membership function \(F(x)(y)\). The function value \(F(x)(y)\) is the grade of membership of \(y\) in \(F(x)\). In case \(X = Y\), \(F(x)\) is a function from \(X\) into \([0,1]\). Especially for a multi-valued function \(f : X \to 2^X\), \(\chi f(x)\) is a function from \(X\) to \([0,1]\). Hence a fuzzy mapping \(F : X \to W(X)\) is another extension of a multi-valued function \(f : X \to 2^X\).

The concept of a fuzzy set provides a natural framework for generalizing many concepts of general topology to fuzzy topology.

DEFINITION 2.3. A family \(\mathcal{F}\) of fuzzy sets in a set \(X\) is called a fuzzy topology for \(X\) and the pair \((X, \mathcal{F})\) a fuzzy topological space, if (1) \(\chi_X \in \mathcal{F}\); (2) \(\chi_\emptyset \in \mathcal{F}\); (3) \(\cup A\in \mathcal{F}\) whenever each \(A\in \mathcal{F}\), \((A \in \mathcal{A})\); and (4) \(A \cap B \in \mathcal{F}\) whenever \(A, B \in \mathcal{F}\). The elements of \(\mathcal{F}\) are called open and their complements closed.

If a fuzzy set \(A\) in a (crisp) topological space \(X\) satisfies \(A(x) \geq \lim sup_{n \to \infty} A(x_n)\), where \((x_n)_{n \geq 1}\) is a sequence in \(X\) converging to a point \(x \in X\), then \(A\) is said to be closed [17]. The fact means that the closed fuzzy set \(A : X \to [0,1]\) is upper semicontinuous, i.e., a fuzzy set \(1 - A\) is lower semicontinuous [13]. Thus we are led to the following definition:

DEFINITION 2.4 [17]. The induced fuzzy topology on a (crisp) topological space \((X, \mathcal{T})\), denoted by \(F(\mathcal{T})\), is the collection of all lower semicontinuous fuzzy sets in \(X\).

It is known that a fuzzy set \(A\) is open in a fuzzy topological space \((X, F(\mathcal{T}))\) [respectively, closed] if and only if for each \(\alpha \in [0,1], \{x \in X| A(x) > \alpha\}\) is open in a (crisp) topological space \((X, \mathcal{T})\) [respectively, \(\{x \in X| A(x) \geq \alpha\}\) is closed]. Recall that a function \(F(x) : X \to [0,1]\) is upper
semicontinuous for each $x \in X$, where F is a fuzzy mapping defined on a metric linear space (X, d) [14].

3. COMMON FIXED POINT THEOREMS FOR SEQUENCES OF FUZZY MAPPINGS.

In this section, we introduce the notions of g-contractive and g-contractive type fuzzy mappings. We show that a sequence of fuzzy mappings with the condition (\ast) satisfies the condition $(\ast\ast)$, and a sequence with the condition $(\ast\ast)$ has a common fixed point. Consequently, we obtain that a g-contractive fuzzy mapping is g-contractive type, and that a g-contractive type fuzzy mapping has a fixed point.

DEFINITION 3.1. Let g be a mapping from a metric linear space (X, d) to itself. A fuzzy mapping $F: X \rightarrow W(X)$ is g-contractive if $D(F(x), F(y)) \leq kd(g(x), g(y))$ for all $x, y \in X$, for some fixed $k, 0 \leq k < 1$.

PROPOSITION 3.2 [14]. Let (X, d) be a complete metric linear space, $F: X \rightarrow W(X)$ a fuzzy mapping and $x_0 \in X$. Then there exists $x_1 \in X$ such that $\{x_1\} \subset F(x_0)$.

DEFINITION 3.3 [14]. Let (X, d) be a complete metric linear space. We call a fuzzy mapping $F: X \rightarrow W(X)$ contractive-type if for all $x, y \in X$, $\{u_x\} \subset F(x)$ there exists $\{v_y\} \subset F(y)$ for all $y \in X$ such that $D(\{u_x\}, \{v_y\}) \leq kd(x, y)$ for some fixed k, $0 \leq k < 1$.

A metric D [respectively, Hausdorff metric H] is a metric on $W(X)$ [respectively, $CP(X)$] such that $D(\{x\}, \{y\}) = d(x, y)$ [respectively, $H(\{x\}, \{y\}) = d(x, y)$]. Hence D [respectively, H] is a generalization of the metric d to fuzzy sets [respectively, crisp sets].

DEFINITION 3.4. Let g be a mapping from a complete metric linear space (X, d) to itself. We call a fuzzy mapping $F: X \rightarrow W(X)$ g-contractive type if for all $x \in X$, $\{u_x\} \subset F(x)$ there exists $\{v_y\} \subset F(y)$ for all $y \in X$ such that $D(\{u_x\}, \{v_y\}) \leq kd(g(x), g(y))$ for some fixed k, $0 \leq k < 1$.

We consider an example of a g-contractive type fuzzy mapping which is not contractive-type.

EXAMPLE 3.5. Let (X, d) be a Euclidean metric space $[0, \infty)$, $d(|\cdot|)$. Define $F: X \rightarrow W(X)$ as follows:

$$F(x)(z) = \begin{cases} 1, & 0 \leq z \leq 2x \\ 0, & z > 2x \end{cases}$$

and define $g: [0, \infty) \rightarrow [0, \infty)$ by $g(z) = 3z$. Then F is not contractive-type but g-contractive type.

THEOREM 3.6. Let g be a mapping from a complete metric linear space (X, d) to itself. If $(F_i)_{i=1}^{\infty}$ is a sequence of fuzzy mappings of X into $W(X)$ satisfying the condition (\ast), then $(F_i)_{i=1}^{\infty}$ satisfies the condition $(\ast\ast)$.

PROOF. Let $x, y \in X$. If $D(F_i(x), F_j(y)) \leq kd(g(x), g(y))$ for some fixed k, $0 \leq k < 1$, then $H(F_i(x), F_j(y)) \leq kd(g(x), g(y))$ for each $\alpha \in [0, 1]$. Define $(F_i)_{\alpha}: X \rightarrow CP(X)$ by $(F_i)_{\alpha}(x) = F_i(x)_{\alpha}$ for each $\alpha \in [0, 1]$. Then $H((F_i)_{\alpha}(x), (F_j)_{\alpha}(y)) = H(F_i(x)_{\alpha}, F_j(y)_{\alpha}) \leq kd(g(x), g(y))$ for each $\alpha \in [0, 1]$. Thus, for each $x \in X, u_x \in (F_i)_{\alpha}(x)$, there exists $v_y \in (F_j)_{\alpha}(y)$ for all $y \in X$ such that $H(\{u_x\}, \{v_y\}) \leq kd(g(x), g(y))$ for each $\alpha \in [0, 1]$. Since $u_x \in F_i(x)_{\alpha}$ and $v_y \in F_j(y)_{\alpha}$, there exists $\{v_y\} \subset F_j(y)$ for all $y \in X$ such that $D(\{u_x\}, \{v_y\}) \leq kd(g(x), g(y))$ for some fixed k, $0 \leq k < 1$.

The converse of Theorem 3.6 does not hold in general.

EXAMPLE 3.7. Let g be an identity mapping from a Euclidean metric space $[0, \infty)$, $d(|\cdot|)$ to itself. Let $(F_i)_{i=1}^{\infty}$ be a sequence of fuzzy mappings from $[0, \infty)$ into $W([0, \infty))$, where $F_i(x): [0, \infty) \rightarrow [0, 1]$ is defined as follows:
If \(x = 0 \), \(F_i(x)(z) = \begin{cases} 1, & 0 \leq z \leq \frac{\varepsilon}{2} \\ 0, & z \notin 0 \end{cases}
\)
otherwise,
\[
F_i(x)(z) = \begin{cases} 1, & 0 \leq z \leq \frac{\varepsilon}{2} \\ \frac{1}{2}, & \frac{\varepsilon}{2} \leq z \leq ix \\ 0, & z > ix. \end{cases}
\]

Then the sequence \((F_i)_{i=1}^\infty\) satisfies the condition (**), but does not satisfy the condition (*).

COROLLARY 3.8 [14]. Let \((X,d)\) be a complete metric linear space. If \(F:X \rightarrow W(X)\) is a contractive fuzzy mapping, then it is contractive-type.

COROLLARY 3.9. Let \(g\) be a mapping from a complete metric linear space \((X,d)\) to itself. If \(F:X \rightarrow W(X)\) is a \(g\)-contractive fuzzy mapping, then \(F\) is \(g\)-contractive type.

Weiss [17] proved a generalization to fuzzy sets of the Schauder-Tychonoff theorem by means of the classical Schauder-Tychonoff theorem, and Butnariu [2] proved that a convex and closed fuzzy mapping \(F\) defined over a nonempty convex compact subset of a real topological vector space, locally convex and Hausdorff separated, has a fixed point. Also he showed that a \(F\)-continuous fuzzy mapping defined over a nonempty convex compact subset of a \(n\)-dimensional Euclidean space \(R^n(n \in N)\) has a fixed point.

Now we prove our main theorem which extends the result of Heilpern [9] on fuzzy contraction mappings and the result of Lee-Cho [14] on contractive-type fuzzy mappings to the case of a sequence of fuzzy mappings on a complete metric linear space.

THEOREM 3.10. Let \(g\) be a non-expansive mapping from a complete metric linear space \((X,d)\) to itself. If \((F_i)_{i=1}^\infty\) is a sequence of fuzzy mappings of \(X\) into \(W(X)\) satisfying the condition (**), then there exists \(p \in X\) such that \(\{p\} \subset F_i(P)\).

PROOF. Let \(x_0 \in X\). Then we can choose \(x_1 \in X\) with \(d(x_0,x_1) > 0\) such that \(\{x_1\} \subset F_1(x_0)\) by Proposition 3.2. By the condition (**), there exists \(x_2 \in X\) such that \(\{x_2\} \subset F_2(x_1)\) with
\[
D(\{x_1\}, \{x_2\}) \leq kd(g(x_0),g(x_1)) \leq kd(x_0,x_1),
\]
for some fixed \(k, 0 < k < 1\). Inductively, we obtain a sequence \((x_n)_{n=1}^\infty\) in \(X\) such that \(\{x_{n+1}\} \subset F_{n+1}(x_n)\) and
\[
D(\{x_1\}, \{x_{n+1}\}) \leq kd(g(x_{n-1}),g(x_n))
\]
for all \(n\). This leads to \(\{x_{n+1}\} \subset F_{n+1}(x_n)\) and \(d(x_n, x_{n+1}) \leq k^n d(x_0, x_1)\) for all \(n\). Since
\[
d(x_n, x_{n+1}) = D(\{x_n\}, \{x_{n+1}\}) \leq \frac{k^{n+1}}{1-k} D(\{x_0\}, \{x_1\}) \leq \frac{k^n}{1-k} d(x_0, x_1)
\]
for all \(n > m\) and \(d(x_n, x_m) \rightarrow 0\) as \(m,n \rightarrow \infty\). By the completeness of \(X\) we find an element \(p \in X\) with \(x_n \rightarrow p\) as \(n \rightarrow \infty\). Let \(F_m\) be an arbitrary member of \((F_i)_{i=1}^\infty\). Since \(\{x_n\} \subset F_n(x_{n-1})\) for all \(n\), there exists \(\{v_n\} \subset F_m(p)\) such that
\[
D(\{x_n\}, \{v_n\}) \leq kd(g(x_{n-1}), g(p)) \leq kd(x_{n-1}, p).
\]
But we have \(d(p,v_n) \leq d(p,x_n) + d(x_n,v_n) \leq d(p,x_n) + kd(x_{n-1}, p)\) which implies \(d(p,v_n) \rightarrow 0\) as \(n \rightarrow \infty\). Since \(F_m(p) : X \rightarrow [0,1]\) is upper semicontinuous, \(\limsup_{n \rightarrow \infty} F_m(p)(v_n) \leq F_m(p)(p)\). Since \(F_m(p)(v_n) = 1\) for all \(n\), \(F_m(p)(p) = 1\). Hence \(\{p\} \subset F_m(p)\) for all \(m\), that is, \(\{p\} \subset \bigcap_{i=1}^\infty F_i(p)\).

REMARK. The sequence \((F_i)_{i=1}^\infty\) in Example 3.7 has a common fixed point \(z = 0\).

COROLLARY 3.11. Let \(g\) be a non-expansive mapping from a complete metric linear space \((X,d)\) to itself. If \((F_i)_{i=1}^\infty\) is a sequence of fuzzy mappings of \(X\) into \(W(X)\) satisfying the condition (*), then there exists \(p \in X\) such that \(\{p\} \subset \bigcap_{i=1}^\infty F_i(p)\).

COROLLARY 3.12. Let \(g\) be a non-expansive mapping from a complete metric linear space \((X,d)\) to itself. If \(F:X \rightarrow W(X)\) is a \(g\)-contractive type fuzzy mapping, then there exists \(p \in X\) such that \(\{p\} \subset F(p)\).

COROLLARY 3.13 [14]. Let \((X,d)\) be a complete metric linear space. If \(F:X \rightarrow W(X)\) is a contractive-type fuzzy mapping, then there exists \(p \in X\) such that \(\{p\} \subset F(p)\).
COROLLARY 3.14 [9]. Let X be a complete metric linear space and F a fuzzy mapping from X to $W(X)$ satisfying the following condition; there exists $q \in (0,1)$ such that $D(F(x), F(y)) \leq qd(x, y)$ for each $x, y \in X$. Then there exists $p \in X$ such that $\{p\} \subseteq F(p)$.

REFERENCES
Submit your manuscripts at
http://www.hindawi.com