ABSTRACT. It is shown that there exist a \(\sigma \)-weakly closed operator algebra \(\hat{A} \) generated by finite rank operators and a \(\sigma \)-weakly closed operator algebra \(\hat{B} \) generated by compact operators such that the Fubini product \(\hat{A} \hat{\otimes} \hat{B} \) contains properly \(\hat{A} \hat{\otimes} \hat{B} \).

KEY WORDS AND PHRASES. The slice map problem.

1991 AMS SUBJECT CLASSIFICATION CODE. 46K50, 46L05.

1. INTRODUCTION.

In [6] Kraus initiated the slice map problem for \(\sigma \)-weakly closed operator spaces. By an operator space we mean a norm closed linear subspace of \(L(H) \), the operators of a Hilbert space \(H \). As stated in the introduction of [9], the slice map problem is of interest because a number of questions concerning tensor products of \(\sigma \)-weakly closed operator spaces are special cases of the slice map problem [4–9].

A \(\sigma \)-weakly closed operator space \(A \) is said to have Property \(S_\sigma \) if \(A \hat{\otimes} F B = A \hat{\otimes} B \) for any \(\sigma \)-weakly closed subspace \(B \) [6]. Kraus [9] first gave \(\sigma \)-weakly closed operator spaces not having Property \(S_\sigma \). Effros et al. [3] also characterized \(\sigma \)-weakly closed operator spaces having Property \(S_\sigma \). One of useful theorems [7, Theorem 2.1] for the slice map problem says that a \(\sigma \)-weakly closed unital operator algebra generated by finite rank operators has Property \(S_\sigma \) (cf. [10]). In this paper, we show that the condition "unital" is essential in the theorem.

2. MAIN RESULT.

For operator spaces \(A \) and \(B \), let \(A \hat{\otimes} B \) denote the norm closed linear span of \(\{a \hat{\otimes} b : a \in A \text{ and } b \in B\} \). If \(A \) and \(B \) are \(\sigma \)-weakly closed, let \(A \hat{\otimes} B \) denote the \(\sigma \)-weakly closed linear span of \(\{a \hat{\otimes} b : a \in A \text{ and } b \in B\} \).

Let \(X \) and \(Y \) be von Neumann algebras. For \(g \in X_* \), the predual of \(X \), the right slice map \(R_g \) associated with \(g \) is a unique bounded linear map from \(X \hat{\otimes} Y \) to \(Y \) such that \(R_g(z \hat{\otimes} y) = < z, g > y \). For \(h \in Y_* \), the left slice map \(L_h \) from \(X \hat{\otimes} Y \) to \(X \) is a unique bounded linear map such that \(L_h(z \hat{\otimes} y) = < y, h > z \). Let \(A \) and \(B \) be \(\sigma \)-weakly closed linear subspaces of \(X \) and...
Y, respectively. We define the Fubini product $A \otimes_F B$ of A and B by $A \otimes_F B = \{ z \in X \otimes Y : R_g(z) \in B, L_h(z) \in A \}$ for every $g \in X$, $h \in Y$. The space $A \otimes_F B$ does not depend on $X \otimes Y$ [6, Remark 1.2].

Let A be a C^*-algebra. If we assume that A acts universally on a Hilbert space H, the second dual A^{**} of A can be identified with the σ-weak closure B of A in $L(H)$. In this case, the weak* topology on A^{**} coincides with the σ-weak topology on B.

The following example shows that the condition "containing the identity" is necessary in Theorem 2.1 of [7].

EXAMPLE. There exist a σ-weakly closed operator algebra \tilde{A} generated by finite rank operators on a Hilbert space H and a σ-weakly closed operator algebra \tilde{B} generated by compact operators on H such that $\tilde{A} \subset \tilde{B}$.

PROOF. Let c_0 denote the C^*-algebra of all complex sequences that converge to zero. Davie [1] constructed a closed linear subspace A_0 of c_0 satisfying the following properties: (1) A_0 does not have the approximation property in the sense of Grothendieck; (2) A_0 contains a dense linear subspace A_1 with the norm topology such that each element has finite support, where each element of c_0 is identified with a function whose domain is the set of all positive integers.

Since c_0^{**} is *-isomorphic to ℓ^∞, the von Neumann algebra of all bounded sequences, we assume that c_0^{**} acts on the Hilbert space ℓ^2 in the usual way. Let A denote the σ-weak closure of A_0 in c_0^{**}. For a closed linear subspace D_0 of c_0, let D denote the σ-weak closure of D_0 in c_0^{**}. We note that $(c_0 \hat{\otimes} c_0)^{**} = c_0^{**} \hat{\otimes} c_0^{**}$ and $A \hat{\otimes} D \subset c_0^{**} \hat{\otimes} c_0^{**}$. Put $F(A_0, D_0, c_0 \hat{\otimes} c_0) = \{ z \in c_0 \hat{\otimes} c_0 : R_g(z) \in D_0, L_h(z) \in A_0 \}$ for every $g \in c_0, h \in c_0$.

By the same argument in the proof of [9, Theorem 5.8] (with a C^*-algebra A replaced by an operator space A), we can choose a closed linear subspace B_0 of c_0 such that $F(A_0, B_0, c_0 \hat{\otimes} c_0)$ contains properly $A_0 \hat{\otimes} B_0$. Let B be the σ-weak closure of B_0 in c_0^{**}. Since $A \cap c_0 = A_0$ and $B \cap c_0 = B_0$, we have $F(A_0, B_0, c_0 \hat{\otimes} c_0) \subset (A \hat{\otimes} B) \cap (c_0 \hat{\otimes} c_0)$. The opposite inclusion is trivial. It follows that $F(A_0, B_0, c_0 \hat{\otimes} c_0) = (A \hat{\otimes} B) \cap (c_0 \hat{\otimes} c_0)$. Since $A \hat{\otimes} B$ is identified with the weak* closure of $A_0 \hat{\otimes} B_0$ in $(c_0 \hat{\otimes} c_0)^{**}$, we have $(A \hat{\otimes} B) \cap (c_0 \hat{\otimes} c_0) = A \hat{\otimes} B_0$. Hence $A \hat{\otimes} F B$ contains properly $A \hat{\otimes} \tilde{B}$.

Let $H = \ell^2 \oplus \ell^2$. Put $\widehat{A} = \left\{ \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} : a \in A \right\}$ and $\tilde{B} = \left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} : b \in B \right\}$. Since A_1 consists of finite rank operators on ℓ^2, it is easy to see that \tilde{A} is a σ-weakly closed operator algebra generated by finite rank operators on H. Since c_0 consists of compact operators on ℓ^2, \tilde{B} is a σ-weakly closed operator algebra generated by compact operators on H. Then

$$\tilde{A} \hat{\otimes} F \tilde{B} \simeq \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} : a \in A \hat{\otimes} F B \right\}$$

and

$$\tilde{A} \hat{\otimes} \tilde{B} \simeq \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} : a \in A \hat{\otimes} \tilde{B} \right\}.$$

Hence $\tilde{A} \hat{\otimes} F \tilde{B}$ contains properly $\tilde{A} \hat{\otimes} \tilde{B}$. This completes the proof.

Let K be the C^*-algebra of all compact operators on a separable infinite dimensional Hilbert space. An operator space A is said to have the operator approximation property if
there exists a net \(\{ \phi_\alpha \} \) of finite rank linear maps from \(A \) to itself such that \(\phi_\alpha \otimes id_K(z) \rightarrow z \) in norm for every \(z \in A \otimes_K K \) [2].

Using techniques in the proof of Example, we restate Theorem 5.5 of [9] in a slightly different form.

PROPOSITION. Let \(A_0 \) be a closed linear subspace of a \(C^* \)-algebra \(D \) and let \(A \) be the weak* closure of \(A_0 \) in \(D^{**} \).

Then the following statements are equivalent:

1. \(A_0 \) has the operator approximation property;
2. \(A_0 \otimes B_0 = (A \otimes_F B) \cap (D \otimes K) \) for any closed linear subspace \(B_0 \) of \(K \).

PROOF. We may assume that \(D \) and \(K \) act in their universal representations. We note that \(D \otimes_K K \subseteq D^{**} \otimes_K K^{**} = (D \otimes K)^{**} \). Let \(B_0 \) be a closed linear subspace of \(K \) and let \(B \) be the weak* closure of \(B_0 \) in \(K^{**} \). Put \(F(A_0, B_0, D \otimes K) = \{ z \in D \otimes K: R_g(z) \in B_0, L_h(z) \in A_0 \) for every \(g \in D^*, h \in K^* \} \). Since \(A \cap D = A_0 \) and \(B \cap K = B_0 \), we have \(F(A_0, B_0, D \otimes K) \supseteq (A \otimes_F B) \cap (D \otimes K) \). The opposite inclusion is trivial. It follows that \(F(A_0, B_0, D \otimes K) = (A \otimes_F B) \cap (D \otimes K) \). Then (2) holds if and only if \(F(A_0, B_0, D \otimes K) = A_0 \otimes B_0 \) for any closed subspace \(B_0 \) of \(K \). Hence the same argument in the proof of [9, Theorem 5.5] (with a \(C^* \)-algebra \(A \) replaced by an operator space \(A \)) implies that (1) and (2) are equivalent.

ACKNOWLEDGMENT. The authors would like to thank Professor J. Kraus for his helpful comments. Thanks are also due to Professor Z.-J. Ruan for sending preprints of [3] and [10].

REFERENCES

ACKNOWLEDGEMENT OF CONTRIBUTIONS TO
S.N. BOSE BIRTH CENTENARY CELEBRATION AND INTERNATIONAL SYMPOSIA.

On behalf of the Calcutta Mathematical Society, I acknowledge with gratitude, contributions received from the following individuals and others to S.N. Bose Birth Centenary Celebration and International Symposia in January 1-3, 1993 and January 1-7, 1994. All of these contributors provide important support for the Society's programs. I wish to express my grateful thanks to all contributors and to others who wished to remain anonymous.

Lokenath Debnath
Vice President

Ajay Amar
Alpona Banerjee
Mr. & Mrs. K.K. Basu
Z. Govindarajulu
Ratan Guha
S.G. Hallanthi
Mr. & Mrs. J.P. Sarkar
Suraj Sen
Dr. & Mrs. S.N. Tervari
Adil Yaqub