CHARACTERISTIC POLYNOMIALS OF SOME WEIGHTED GRAPH BUNDLES AND ITS APPLICATION TO LINKS

MOO YOUNG SOHN
Department of Mathematics
Changwon University
Changwon 641-773, Korea

and

JAEUN LEE
Department of Mathematics
Kyungpook National University
Taegu 702-701, Korea

(Received February 20, 1992)

ABSTRACT. In this paper, we introduce weighted graph bundles and study their characteristic polynomial. In particular, we show that the characteristic polynomial of a weighted K_2 (K_2)-bundles over a weighted graph Γ_ω can be expressed as a product of characteristic polynomials two weighted graphs whose underlying graphs are Γ. As an application, we compute the signature of a link whose corresponding weighted graph is a double covering of that of a given link.

KEY WORDS AND PHRASES. Graphs, weighted graphs, graph bundles, characteristic polynomials, links, signature.

1991 AMS SUBJECT CLASSIFICATION CODES. 05C10, 05C50, 57M25.

1. INTRODUCTION.

Let Γ be a simple graph with vertex set $V(\Gamma)$ and edge set $E(\Gamma)$. Let R be the field of real numbers. A weighted graph is a pair $F(r, w)$, where F is a graph and $w: V(F) \cup E(F) \rightarrow R$ is a function. We call F the underlying graph of F, and w the weight function of F. In particular, if $w(E(r)) \subseteq \{0, 1\}$ and $w(V(r)) = \{0\}$, then we call F a signed graph.

Let $V(\Gamma) = \{u_1, \ldots, u_n\}$. The adjacency matrix of Γ_ω is an $n \times n$ matrix $A(\Gamma_\omega) = (a_{ij})$ defined as follows:

$$a_{ij} = \begin{cases}
\omega(e) & \text{if } e = u_iu_j \in E(\Gamma) \text{ and } i \neq j, \\
\omega(u_i) & \text{if } i = j, \\
0 & \text{otherwise,}
\end{cases}$$

for $1 \leq i, j \leq n$.

The characteristic polynomial $P(\Gamma_\omega; \lambda) = |\lambda I - A(\Gamma_\omega)|$ of the adjacency matrix $A(\Gamma_\omega)$ is called the characteristic polynomial of the weighted graph Γ_ω. A root of $P(\Gamma_\omega; \lambda)$ is called an eigenvalue of Γ_ω.

Note that if the weight function L of Γ is defined by $L(e) = -1$ for $e \in E(\Gamma)$ and $L(u) = \deg(u)$ for $u \in V(\Gamma)$, where $\deg(u)$ denotes the degree of u, that is, the number of edges incident to u, then the weighted adjacency matrix $A(\Gamma_L)$ is called the Laplacian matrix of Γ. We call L the Laplacian function of Γ. The number of spanning trees of a connected graph Γ is the
value of any cofactor of $A(\Gamma_L^\phi)$ [Matrix tree theorem] and is equal to the value $\frac{1}{n!} \prod_{\lambda \neq 0} \lambda$, where λ runs through all non-zero eigenvalues of $A(\Gamma_L^\phi)$. Moreover, the eigenvalues of $A(\Gamma_L^\phi)$ may be used to calculate the radius of gyration of a Gaussian molecule. For more applications of the eigenvalues of $A(\Gamma_L^\phi)$, the reader is suggested to refer [5].

2. WEIGHTED GRAPH BUNDLES.

First, we introduce a weighted graph bundle. Every edge of a graph Γ gives rise to a pair of oppositely directed edges. We denote the set of directed edges of Γ by $D(\Gamma)$. By e^{-1} we mean the reverse edge to an edge $e \in D(\Gamma)$. For any finite group G, a G-voltage assignment of Γ is a function $\phi: D(\Gamma) \rightarrow G$ such that $\phi(e^{-1}) = \phi(e)^{-1}$ for all $e \in D(\Gamma)$. We denote the set of all G-voltage assignments of Γ by $C^1(\Gamma; G)$. Let Λ be another graph and let $\phi \in C^1(\Gamma; \text{Aut}(\Lambda))$, where $\text{Aut}(\Lambda)$ is the group of all graph automorphisms of Λ. Now, we construct a graph $\Gamma \times ^\phi \Lambda$ as follows: $V(\Gamma \times ^\phi \Lambda) = V(\Gamma) \times V(\Lambda)$. Two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $\Gamma \times ^\phi \Lambda$ if either $u_1 u_2 \in D(\Gamma)$ and $v_1 v_2 = \phi(u_1 u_2) v_1$ or $u_1 = u_2$ and $v_1 v_2 \in E(\Lambda)$. We call $\Gamma \times ^\phi \Lambda$ the Λ-bundle over Γ associated with ϕ and the natural map $p^\phi: \Gamma \times ^\phi \Lambda \rightarrow \Gamma$ the bundle projection. We also call Γ and Λ the base and the fibre of $\Gamma \times ^\phi \Lambda$, respectively. Note that the map p^ϕ maps vertices to vertices but an image of an edge can be either an edge or a vertex. If Λ is the complement \bar{K}_n of the complete graph K_n of n vertices, then every Λ-bundle over Γ is an n-fold covering graph of Γ.

Let Γ_ω and Λ_μ be two weighted graphs and let $\phi \in C^1(\Gamma; \text{Aut}(\Lambda))$. We define the product of μ and ω with respect to ϕ, $\omega \times ^\phi \mu$, as follows:

1. For each vertex (u, v) of $V(\Gamma \times ^\phi \Lambda), (\omega \times ^\phi \mu)(u, v) = \omega(u) + \mu(v)$.
2. For each edge $e = (u_1, v_1)(u_2, v_2)$ of $E(\Gamma \times ^\phi \Lambda)$,

$$(\omega \times ^\phi \mu)(e) = \begin{cases} \omega(u_1 u_2) & \text{if } u_1 u_2 \in D(\Gamma) \text{ and } v_1 v_2 = \phi(u_1 u_2) v_1 \\ \mu(v_1 v_2) & \text{if } u_1 = u_2 \text{ and } v_1 v_2 \in E(\Gamma). \end{cases}$$

We call the weighted graph $(\Gamma \times ^\phi \Lambda)_{\omega \times ^\phi \mu}$ the Λ_μ-bundle over Γ_ω associated with ϕ. Briefly, we call it a weighted graph bundle.

3. CHARACTERISTIC POLYNOMIALS.

In this section, we give a computation for the characteristic polynomial of a weighted graph bundle $\Gamma \times ^\phi \Lambda$, where Λ is either complete graph K_2 of two vertices or its complement \bar{K}_2, and study their related topics. Note that $\text{Aut}(K_2) = \text{Aut}(\bar{K}_2) = Z_2$.

For a given graph Γ with weight function ω and for a $\phi \in C^1(\Gamma; Z_2)$, we define a new weight function ω^ϕ on Γ as follows:

FIGURE 1. The graphs $C_4 \times ^\phi K_2$ and $(C_4 \times ^\phi K_2)_{\omega \times ^\phi \mu}$.

For $e \in E(\Gamma)$,
\[
\omega^\phi(e) = \begin{cases}
\omega(e) & \text{if } \phi(e) = 1 \\
-\omega(e) & \text{if } \phi(e) = -1
\end{cases}
\]

For $v \in V(\Gamma)$, $\omega^\phi(v) = u(v)$.

A subgraph of Γ is called an elementary configuration if its components are either complete graph K_1 or K_2 or a cycle $C_m (m \geq 3)$. We denote by E_k the set of all elementary configurations of Γ having k vertices. In [3], the characteristic polynomial of a weighted graph Γ_ω is given as follows:

\[
P(\Gamma_\omega; \lambda) = \sum_{k=0}^{n} a_k(\Gamma_\omega)\lambda^{n-k},
\]

where

\[
a_k(\Gamma_\omega) = \sum_{S \in E_k} (-1)^{\kappa(S)} \left| C(S) \right| \prod_{u \in I_u(S)} \omega(u) \prod_{e \in I_e(S)} \omega(e) \prod_{c \in C(c)} \omega(c).
\]

In the above equation, symbols have the following meaning: $\kappa(S)$ is the number of components of S, $C(S)$ the set of all cycles, $C_m (m \geq 3)$, in S, and $I_u(S)$\(\cap I_e(S)\) is the set of all isolated vertices (edges) in S. Moreover, the product over empty index set is defined to be 1.

For a fixed voltage assignment $C(\Gamma; \mathbb{Z})$, we denote by E_ϕ the set of edges of Γ such that $\phi(e) = -1$, i.e., $E_\phi = \{ e \in E(\Gamma) : \phi(e) = -1 \}$. Let $\Gamma(E_\phi)$ be the edge subgraph of Γ induced by E_ϕ having weight zero in vertices. If Γ_ω is a weighted graph, then the weight function of its subgraph S is the restriction of ω on S.

Theorem 1. Let K_2 be a constant weighted graph, say $\mu(v) = c$ for $v \in K_2$. Then, for each $\phi \in C^1(\Gamma; \mathbb{Z})$, we have

\[
P((\Gamma K_2)_{\omega,^\phi, c}; \lambda) = P(\Gamma_\omega; \lambda - c)P(\Gamma_\omega; \lambda - c).
\]

Proof. Let $A(\Gamma_\omega)$ be the adjacency matrix of Γ_ω and let $A(\Gamma_{\omega,^\phi})$ the adjacency matrix of $\Gamma_{\omega,^\phi}$. Then we have

\[
A(\Gamma_\omega) = A(\Gamma \setminus (E_{\phi, -1})_{\omega}) + A(\Gamma(E_{\phi, -1})_{\omega}),
\]

\[
A(\Gamma_{\omega,^\phi}) = A(\Gamma \setminus (E_{\phi, -1})_{\omega}) - A(\Gamma(E_{\phi, -1})_{\omega}).
\]

Let $V(\Gamma K_2) = \{(u_1, 1), \cdots , (u_n, 1), (u_1, -1), \cdots , (u_n, -1)\}$. If is not difficult to show that

\[
A(\Gamma K_2)_{\omega,^\phi, c} = A(\Gamma_\omega) - A(\Gamma(E_{\phi, -1})_{\omega}) + \begin{bmatrix} c & 0 \\ 0 & \ddots \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]

\[
+ (A(\Gamma(E_{\phi, -1})_{\omega})) \otimes \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]

Let M be a regular matrix of order 2 satisfying

\[
M^{-1} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} M = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
\]

Put

\[
X = A(\Gamma_\omega) - A(\Gamma(E_{\phi, -1})_{\omega}) + \begin{bmatrix} c & 0 \\ 0 & \ddots \end{bmatrix}
\]

\[
Y = A(\Gamma(E_{\phi, -1})_{\omega}).
\]
Then

\[
(I \otimes M^{-1}) A \left((\Gamma \times \phi K_2)^{\omega \times \phi_c} \right) (I \otimes M)
\]

\[
= \begin{bmatrix}
X + Y & 0 \\
0 & X - Y
\end{bmatrix}
\]

\[
A(\Gamma \omega) + \begin{bmatrix}
c & 0 \\
0 & c
\end{bmatrix}
\]

\[
A(\Gamma \omega) + \begin{bmatrix}
c & 0 \\
0 & c
\end{bmatrix}
\]

Since \(|(I \otimes M^{-1})(I \otimes M)| = 1\) and

\[
\left| I - A \left((\Gamma \times \phi K_2)^{\omega \times \phi_c} \right) \right| = \left| I - (I \otimes M^{-1}) A \left((\Gamma \times \phi K_2)^{\omega \times \phi_c} \right) (I \otimes M) \right|
\]

we have our theorem. \(\square\)

THEOREM 2. Let \(K_2^\mu = (K_2, \mu)\) be a weighted graph having constant weight on vertices. Then, for each \(b \in C(\Gamma; Z_2)\), we have

\[
P((\Gamma \times \phi K_2)^{\omega \times \phi_c}; \lambda) = P(\Gamma \omega; \lambda - c_v - c_e)P(\Gamma \omega; \lambda - c_v + c_e),
\]

where \(c_v = \mu(v_1) = \mu(v_2)\) for the vertices \(v_1, v_2\) and \(c_e = \mu(e)\) for the edge \(e\) in \(K_2\).

PROOF. Clearly, we have

\[
A((\Gamma \times \phi K_2)^{\omega \times \phi}) = (A(\Gamma \omega) - A(\Gamma(E_{\phi = 1})\omega) + \begin{bmatrix}
c_v & 0 \\
0 & c_v
\end{bmatrix}) \otimes \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]

\[
+ \left(A(\Gamma(E_{\phi = 1})\omega) + \begin{bmatrix}
c_e & 0 \\
0 & c_e
\end{bmatrix} \right) \otimes \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\]

where \(c_v = \mu(v_1) = \mu(v_2)\) and \(c_e = \mu(e)\) for the edge \(e\) in \(K_2\). Let \(M\) be a regular matrix of order 2 satisfying

\[
M^{-1} \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix} M = \begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix}
\]

Then

\[
(I \otimes M^{-1}) A \left((\Gamma \times \phi K_2)^{\omega \times \phi_c} \right) (I \otimes M)
\]

\[
= \begin{bmatrix}
X + Y + \begin{bmatrix}
c_e & 0 \\
0 & c_e
\end{bmatrix} & 0 \\
0 & X - Y + \begin{bmatrix}
c_e & 0 \\
0 & c_e
\end{bmatrix}
\end{bmatrix}
\]
where X and Y are the same matrices as in the proof of Theorem 1 and for $i = 1, 2$.

Using method similar to the proof of Theorem 1, we have our theorem.

Note that for any $\phi \in C^1(\Gamma; \text{Aut}(\Lambda))$, the Laplacian function of $\Gamma \times \phi \Lambda$ is the product of Laplacian functions of Γ and Λ with respect to ϕ. Clearly, the Laplacian function of the K_2 is the zero function; and the Laplacian function of the K_2 has value 1 and -1 for each of its vertices and its edge, respectively. We shall denote the Laplacian function of a graph by L if it makes no confusion. Then Theorem 1 and Theorem 2 give the following corollary.

COROLLARY 1. For any $\phi \in C^1(\Gamma; Z)$,

1. $P((\Gamma \times \phi K_2); \lambda) = P(\Gamma; \lambda)P(\Gamma_\phi; \lambda)$.
2. $P((\Gamma \times \phi K_2); \lambda) = P(\Gamma; \lambda)P(\Gamma_\phi; \lambda - 2)$.

Now, we consider another invariant of weighted graphs called the signature. Since $A(\Gamma_\omega)$ is symmetric, $A(\Gamma_\omega)$ can be diagonalized through congruence over R. Let d_+ denote the number of positive diagonal entries, and d_- the number of negative diagonal entries. The signature of a weighted graph (Γ_ω) is defined by $\sigma(\Gamma_\omega) = d_+ - d_-$ and is denoted by $\sigma(\Gamma_\omega)$. It is an invariant for weighted 2-isomorphic graphs (see [7]).

From now on, we will consider the weight function on K_2 as zero function and the weight function μ on K_2 as the map defined by $\mu(v) = 0$ for each $v \in V(K_2)$ and $\mu(e) = c_e$ for the edge e of K_2. Then we can compute the signature of a double covering of Γ.

COROLLARY 2. $\sigma((\Gamma \times \phi K_2); \lambda, \phi) = \sigma(\Gamma_\omega) + \sigma(\Gamma_\phi)$ for $\phi \in C^1(\Gamma; Z)$.

For convenience, we adapt the following notations. For a real number c, a weighted graph Γ_η and an eigenvalue λ of Γ_η,

- $P(c_{\eta}) = \{ \lambda < 0: \lambda + c > 0 \}$,
- $P(c_{\eta})^+ = \{ \lambda > 0: \lambda + c > 0 \}$,
- $Z(c_{\eta}) = \{ \lambda \neq 0: \lambda + c = 0 \}$,
- $N(c_{\eta}) = \{ \lambda < 0: \lambda + c < 0 \}$,
- $N(c_{\eta})^+ = \{ \lambda > 0: \lambda + c < 0 \}$.

We also denote the multiplicity of λ by $m_{\eta}(\lambda)$.

By using the above notations and Theorem 2, we get the signature of a K_2-bundle over Γ.

COROLLARY 3. For $\phi \in C^1(\Gamma; Z)$,

1. if $c_e \geq 0$, then

$$\sigma((\Gamma \times \phi K_2); \lambda, \phi) = \sigma(\Gamma_\omega) + \sigma(\Gamma_\phi)$$

$$+ \left(2 \sum_{n \in P(c_e)} m_{\omega}(\lambda) + m_{\phi}(0) + \sum_{\lambda \in Z(c_e)} m_{\omega}(\lambda) \right)$$

$$- \left(2 \sum_{n \in N(-c_e)} m_{\omega}(\lambda) + m_{\phi}(0) + \sum_{\lambda \in Z(-c_e)} m_{\omega}(\lambda) \right).$$
(2) if $c_r < 0$, then
\[
\sigma(\Gamma \times \Phi K_i) \omega = \sigma(\Gamma) + \sigma(\Gamma)_{\phi} - \left(2 \sum_{\lambda \in \Pi_{\Omega}} m_\omega(\lambda) + m_\omega(0) + \sum_{\lambda \in \Delta} \omega(\epsilon(\lambda)) m_\omega(\lambda)\right)
\]
\[
+ \left(2 \sum_{\lambda \in \Pi(-C_i)} m_\omega(\lambda) + m_\omega(0) + \sum_{\lambda \in \Delta} \omega(\epsilon(\lambda)) m_\omega(\lambda)\right)
\]

Remark. Though the results in this section stated only for a simple graph, it remains true for any graph.

4. **Applications to Links.**

In a signed graph Γ, an edge e of Γ is said to be positive if $\omega(e) = 1$ and negative otherwise. For a signed graph Γ, we define a new weight function $\tilde{\omega}$ of Γ by $\tilde{\omega}(e) = \omega(e)$ for any edge $e \in \Gamma$ and $\tilde{\omega}(u_i) = \sum_{i=1, i \neq j}^n a_{ij}$, where a_{ij} is the number of positive edges minus the number of negative edges which have two end vertices u_i and u_j. Given a knot or link L in \mathbb{R}^3, we project it into \mathbb{R}^2 so that each crossing point has proper double crossing. The image of L is called a **link (or knot) diagram** of L, and we do not distinguish between a diagram and the image of L.

We may assume without loss of generality that a link diagram \tilde{L} of L intersects itself transversely and has only finitely many crossings. The link diagram \tilde{L} divides \mathbb{R}^2 into finitely many domains, which will be classified as shaded or unshaded. No two shaded or unshaded domains have an edge in common. We now construct a signed planar graph Γ from \tilde{L} as follows: take a point v_i from each unshaded domain D_i. These points form the set of vertices $V(\Gamma)$ of Γ. If the boundaries of D_i and D_j intersect k-times, say, crossing at $c_{e_1}, c_{e_2}, \ldots, c_{e_k}$, then we form multiple edges $e_{e_1} c_{e_2} \ldots c_{e_k}$ on \mathbb{R}^2 with common end vertices v_i and v_j, where each edge e_{e_m} passes through a crossing c_{e_m} for $m = 1, 2, \ldots, k$. To define the weight of an edge, first, we define the index $\epsilon(c)$ to each crossing c of the link diagram as in Figure 2. To each edge of Γ passes through exactly one crossing, say c, of \tilde{L}, the weight $\omega(e)$ will be defined as $\omega(e) = \epsilon(c)$. (See Figure 3.)

![Figure 2. The index \(\epsilon(c) \).](image-url)
SOME WEIGHTED GRAPH BUNDLES

FIGURE 3. The correspondence between \(\mathcal{L} \) and \(\Gamma_w(\mathcal{L}) \).

The resulting signed planar is called the graph of a link with respect to \(\mathcal{L} \), and it is denoted by \(\Gamma_w(\mathcal{L}) \). The signed planar graph \(\Gamma_w(\mathcal{L}) \) depends not only on \(\mathcal{L} \) but also on shading. Conversely, given a signed planar graph \(\Gamma_\rho \), one can construct uniquely the link diagram \(L(\Gamma_\rho) \) of a link so that \(\Gamma_w(L(\Gamma_\rho)) = \Gamma_\rho \).

FIGURE 4. The index \(\omega(c) \).

Suppose that we are given an oriented link \(L \). The orientation of \(L \) induces the orientation of a diagram \(\mathcal{L} \). We then define the second index \(\omega(c) \), called the twist or writhe at each crossing \(c \) as shown in Figure 4. We now need the third index \(\eta_\rho(c) \) at each crossing \(c \). Let \(\mathcal{L} \) be an oriented diagram and \(\rho \) shading on \(\mathcal{L} \). Let \(\eta_\rho(c) = \omega(c)\delta_{\delta(c),\omega(c)} \), where \(\delta \) denotes Kronecker's delta. We define \(\eta_\rho(\mathcal{L}) = \sum \eta_\rho(c) \), where the summation runs over all crossing in \(\mathcal{L} \). The index \(\eta_\rho(\mathcal{L}) \) depends not only on the shading \(\rho \) but also on the orientation of \(\mathcal{L} \). The following Lemma can be found in ([7], [4]).

LEMMA 1. The signature \(\sigma(L) \) of a link \(L \) is \(\sigma(L) = \sigma(\Gamma(\mathcal{L})) - \eta_\rho(\mathcal{L}) \).

Let \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \) be link diagrams of \(L_1 \) and \(L_2 \), respectively. The link \(L_2 \) is called a double covering of the link \(L_1 \) if \(\Gamma_w(\mathcal{L}_2) \) is a double covering of \(\Gamma_w(\mathcal{L}_1) \) as weighted graphs and it can be extended to a branched covering on \(R^2 \). Let \(\phi \) be a voltage assignment in \(C^1(\Gamma_w(\mathcal{L}_1); \mathbb{Z}_2) \) such that \(\phi(e) = -1 \) for some edge \(e \) and \(\phi(e) = 1 \) otherwise, then \(\Gamma_w(\mathcal{L}) \times \times K_2 \) is a planar double covering of \(\Gamma_w(\mathcal{L}) \) of which the corresponding link is a double covering of \(L \).

Therefore, one can construct the double covering link diagram \(\mathcal{L} (\Gamma_w(\mathcal{L})) \times K_2 \) of \(\mathcal{L} \). Moreover, we can give an orientation on \(\mathcal{L} (\Gamma_w(\mathcal{L})) \times K_2 \) so that the covering map from \(\mathcal{L} \) to \(\mathcal{L} (\Gamma_w(\mathcal{L})) \times K_2 \) preserves the orientation. We have \(\eta_\rho(\mathcal{L} (\Gamma_w(\mathcal{L})) \times K_2) = 2\eta_\rho(\mathcal{L}) \) (see Figure 5).
Therefore, by using Lemma and Corollary 2, we get the following theorem.

THEOREM 3. For any oriented link diagram Γ,

$$\sigma(\bar{\Gamma}(\Gamma) \times \ast K_2) = \sigma(\Gamma) + \sigma(\bar{\Gamma}) - 2\eta(\bar{\Gamma})$$

for each $\phi \in \mathcal{C}^1(\Gamma; Z_2)$ such that $\phi(e) = -1$ for some edge $e \in \Gamma$ and $\phi(e) = 1$ otherwise.

ACKNOWLEDGEMENT. The first author was supported by KOSEF and the second author was supported by TGRC-KOSEF.

REFERENCES

Submit your manuscripts at http://www.hindawi.com