MINIMAL CR-SUBMANIFOLDS OF A SIX-DIMENSIONAL SPHERE

M. HASAN SHAHID and S. I. HUSAIN

Department of Mathematics
Faculty of Natural Sciences
Jamia Millia Islamia, New Delhi - 110025
INDIA

Department of Mathematics
Aligarh Muslim University
Aligarh, 202002, INDIA

(Received February 18, 1993)

ABSTRACT. We establish several formulas for a 3-dimensional CR-submanifold of a six-dimensional sphere and state some results obtained by making use of them.

KEY WORDS AND PHRASES. CR-submanifold, D-minimal and D⁺⁻-minimal CR-submanifold.

1991 AMS SUBJECT CLASSIFICATION CODE. 53C40.

1. INTRODUCTION. Among all submanifolds of a Kaehler manifold there are three typical classes: the complex submanifolds, the totally real submanifolds and the CR-submanifolds. The notion of a CR-submanifold of a Kaehler manifold was introduced by Bejancu [1] and it includes the other two classes as special cases. A Riemannian submanifold M of an almost Hermitian manifold M is called a CR-submanifold if there exists a pair of orthogonal complementary distribution D and $D⁺⁻$ on M satisfying $JD = D$ and $JD⁺⁻ \subset \nu$, where ν is the normal bundle of M. If M is a real hypersurface of a Kaehler manifold, then M is obviously a CR-submanifold.

It is known that every Kaehler manifold is nearly Kaehler but the converse is not true in general. The most typical example of nearly Kaehler manifolds is a six-dimensional sphere S^6. It is because of this nearly Kaehler, non-Kaehler, structure that S^6 has attracted attention.

The object of the present paper is to establish several formulas for a 3-dimensional CR-submanifold of a six-dimensional sphere and state some result obtained by making use of them.

2. PRELIMINARIES.

Let \bar{M} be an almost complex manifold with almost complex structure J, and Hermitian metric g. \bar{M} is called a nearly Kaehler manifold if

\[
(\nabla_X J)(Y) + (\nabla_Y J)(X) = 0
\]

for $X, Y \in (\bar{M})$, where ∇ is Riemannian connection on \bar{M}.

In [5], K. Takamatsu and T. Sato proved the following theorem:

THEOREM. Let $\bar{M} = (\bar{M}, J, g)$ be a non-Kaehler, nearly Kaehler manifold of constant holomorphic sectional curvature. Then \bar{M} is a six-dimensional space of positive constant sectional curvature.

If a nearly Kaehler manifold \bar{M} is constant holomorphic sectional curvature c, then by the above result, the curvature tensor \bar{R} of \bar{M} is given by

\[
R(X, Y, Z, W) = c(g(Y, Z)g(X, W) - g(X, Z)g(Y, W)).
\]
Let M be an m-dimensional CR-submanifolds of a six-dimensional sphere \bar{M} and let us denote by the same g the Riemannian metric tensor field induced on M from that of \bar{M}. Let P and Q be the projection operators corresponding to D and D^\perp respectively.

For a vector field X tangent to M, we put

$$JX = PX + QX$$

where PX (resp. QX) denote the tangent (resp. normal) component of JX.

We now denote by ∇ (resp. ∇^\perp) the Riemannian connection in \bar{M} (resp. M) with respect to the Riemannian metric g. The linear connection induced by ∇ on the normal bundle $T^\perp M$ is denoted by ∇^\perp. Thus the Gauss and Weingarten formulas are given by

$$\nabla_X Y = \nabla_X Y + h(X, Y), \quad \nabla_X N = -A_N X + \nabla_X N^\perp$$

for all $X, Y \in TM$ and $N \in T^\perp M$, where h is the second fundamental form of M and A_N is the fundamental tensor with respect to the normal section N. These tensor fields are related by

$$g(h(X, Y), N) = g(A_N X, Y).$$

The equation of Gauss is given by

$$R(X, Y, z, W) = R(X, Y, Z, W) - g(h(X, W), h(Y, Z)) + g(h(X, Z), h(Y, W)).$$

DEFINITION. A CR-submanifold M is called D-minimal (resp. D^\perp-minimal) if $P h(E_i, E_i) = 0$ (resp. $E_i^\perp h(F_i, F_i) = 0$) where $\{E_1, E_2, \ldots, E_p\}$ (resp. $\{F_1, F_2, \ldots, F_q\}$ is a local field of frames of D (resp. D^\perp).

DEFINITION. A CR-submanifold M is called D-totally geodesic (resp. D^\perp-totally geodesic) if $h(X, Y) = 0$ for each $X, Y \in D$ (resp. $X, Y \in D^\perp$). M is called a mixed totally geodesic if $h(X, Z) = 0$ for each $X \in D, Z \in D^\perp$.

Let M be a 3-dimensional CR-submanifold of S^6. It is known that S^6 is nearly Kaehler manifold of constant type 1. Suppose $\dim D = 2, \dim D^\perp = 1$, and $\{E_1, JE_1\}$ be a local frame in D and $\{F\}$ that of D^\perp.

The mean curvature vector H is defined by

$$H = \frac{1}{3} \left\{ \sum_{i=1}^{2p} h(E_i, E_i) + h(F, F) \right\}.$$ (3.1)

If $H = 0$, then M is said to be minimal. Now we define

$$H_D = \frac{1}{2} \sum_{i=1}^{2p} h(E_i, E_i), H_{D^\perp} = h(F, F).$$ (3.2)

If $H_D = 0$, then M is said to be D-minimal and if $H_{D^\perp} = 0$, then M is said to be D^\perp-minimal.

Let U, V be any vector field tangent to CR-submanifold M. The Ricci tensor and the scalar curvature are respectively given by

$$S(U, V) = \sum_{i=1}^{2p} g(R(E_i, U)V, E_i) + g(R(F, U)V, F),$$ (3.3)

$$\rho = \sum_{i=1}^{2p} S(E_i, E_i) + S(F, F).$$ (3.4)
Also
\[S_D(U,V) = g(R(E_i,U)V,E_i), S_D(U,V) = g(R(F,U)V,F). \] (3.5)

\[\rho_{DD} = \sum_{i=1}^{2} S_D(E_i,E_i), \rho_{DD} = S_D(F,F). \] (3.6)

\[\rho_{D} = \sum_{i=1}^{2} S_D(E_i,E_i), \rho_{D} = S_D(F,F). \] (3.7)

Now using (2.2) and (2.6), we have for \(X,Y \in TM \)
\[S_D(X,Y) = 2g(X,Y) - g(PX, PY) + 2g(HD, h(X,Y)) \] (3.8)

\[S_D(X,Y) = g(X,Y) - g(QX, QY) + g(HD, h(X,Y)) \] (3.9)

\[\rho_{DD} = 2 + 4g(HD, HD) - \sum_{i,J=1}^{2} \| h(E_i,F) \|^2, \] (3.10)

\[\rho_{DD} = 2 + 2g(HD, HD) - \sum_{i=1}^{2} \| h(E_i,F) \|^2, \] (3.11)

\[\rho_{D} = g(HD, HD) - \| h(F,F) \|^2. \] (3.12)

It is easy to see that
\[\rho_{DD} = \rho_{D}. \]

Now we prove

THEOREM 1. Let \(M \) be a \(D \)-minimal CR-submanifold of a 6-dimensional sphere \(S^6 \). Then the following hold:

(a) \(S_D(X,X) - 2 \| X \|^2 + \| PX \|^2 \leq 0 \), for \(X \in TM \)

(b) \(\rho_{DD} \leq 2 \)

(b') \(\rho_{DD} \leq 2. \)

The equality in (a) for \(X \in D \), and in (b) holds if and only if \(M \) is \(D \)-totally geodesic.

The equality in (a) for \(X \in D^\perp \) and in (b') holds if and only if \(M \) is mixed totally geodesic.

PROOF. Since \(M \) is \(D \)-minimal, from (3.8), we have
\[S_D(X,X) - 2 \| X \|^2 + \| PX \|^2 = \sum_{i=1}^{2} g(h(E_i,X),h(E_i,X)). \]

This proves (a) and (b), (b') follow from (3.10) and (3.11). Similarly, we have

THEOREM 2. Let \(M \) be a \(D^\perp \)-minimal CR-submanifold of a 6-dimensional sphere \(S^6 \). Then the following hold:

(a) \(S_D^\perp(X,X) - \| X \|^2 + \| QX \|^2 \leq 0 \), for \(X \in TM \)

(b) \(\rho_{D} \leq 2. \)
The equality for $X \in D^\perp$ in (a) and (b') holds if and only if M is D^\perp-totally geodesic.

The equality for $X \in D$ in (a) and in (b) holds if and only if M is mixed totally geodesic.

Proof. Since M is D^\perp-minimal, so from (3.9), we have

$$S_{D^\perp}(X,X) = \|X\|^2 + \|QX\|^2 = -g(h(F,X),h(F,X)).$$

which proves (a) and (b), (b') follows from (3.11) and (3.12).

Remarks. The example given by Sekigawa [6] is an example of D-totally geodesic and D^\perp-totally geodesic (and hence minimal) proper CR-submanifold of a 6-dimensional sphere and this illustrates the Theorem in the sense that $S^3 \times S^1$, where f is a function on S^3, is a D-minimal CR-submanifold of S^6 in which it is easily verified that $\rho_{DD} = 2$. The equality arises because it is also D-totally geodesic in S^6.

Acknowledgement. The author wishes to express their hearty thanks to Professor K. Sekigawa who kindly checked the original manuscripts.

References

Submit your manuscripts at http://www.hindawi.com