CLASSICAL QUOTIENT RINGS OF GENERALIZED MATRIX RINGS

DAVID G. POOLE
Department of Mathematics, Trent University
Peterborough, Ontario, Canada, K9J 7B8
e-mail: DPOOLE@TrentU.ca

and

PATRICK N. STEWART
Department of Mathematics, Statistics and Computing Science
Dalhousie University, Halifax, Nova Scotia, Canada, B3H 3J5
e-mail: stewart@cs.dal.ca

(Received March 18, 1993)

ABSTRACT. An associative ring R with identity 1 is a generalized matrix ring with idempotent set E if E is a finite set of orthogonal idempotents of R whose sum is 1. We show that, in the presence of certain annihilator conditions, such a ring is semiprime right Goldie if and only if eRe is semiprime right Goldie for all $e \in E$, and we calculate the classical right quotient ring of R.

KEY WORDS AND PHRASES. Generalized matrix ring, quotient ring, Goldie conditions.
1991 AMS SUBJECT CLASSIFICATION CODES. 16P60, 16U20.

1. INTRODUCTION.

Each ring considered in this paper is associative and has an identity. Such a ring R is a generalized matrix ring with idempotent set E if E is a finite set of orthogonal idempotents of R whose sum is 1.

In this paper, we show that, in the presence of certain non-degeneracy conditions, a generalized matrix ring R with idempotent set E is semiprime right Goldie if and only if eRe is semiprime right Goldie for all $e \in E$, and we calculate the classical right quotient ring of R. Kerr's example [4] of a right Goldie ring whose matrix ring is not right Goldie shows that our semiprimeness condition cannot be omitted.

Examples of generalized matrix rings include incidence algebras of directed graphs with a finite number of vertices (see [5] and [9]), structural matrix rings (see Van Wyk [13] and subsequent papers), endomorphism rings of finite direct sums of modules and Morita context rings. Sands [10] observed that if $[S,V,W,T]$ is a Morita context, then

$$
\begin{bmatrix}
S & V \\
W & T
\end{bmatrix}
$$

is a ring. These Morita context rings are precisely generalized matrix rings with idempotent sets E such that $|E| = 2$, and they have been widely studied. In particular, we note Amitsur's paper [1], the survey paper [6], McConnell and Robson's treatment in ([7], 1.1 and 3.6) and
Müller's computation of the maximal quotient ring in [8].

A generalized matrix ring \(R \) with idempotent set \(E \) is called a piecewise domain if for all \(e, f, g \in E \), \(x \in eRf \) and \(y \in fRg \), we have \(xy = 0 \) implies \(x = 0 \) or \(y = 0 \). These rings have been studied in some detail—see, for instance, [2] and [3].

We denote the prime radical of a ring \(R \) by \(p(R) \) and if \(e \) and \(f \) are idempotents of \(R \), \(e \neq f \), \(p(eRf) \) denotes the set \(\{ x \in eRf : xfRRe \subseteq p(Re) \} \).

Proposition 1.1 (Sands [10]). If \(R \) is a generalized matrix ring with idempotent set \(E \), then

\[
p(R) = \sum_{e, f \in E} p(eRf).
\]

Proof. If \(|E| = 1 \) there is nothing to prove and if \(|E| = 2 \) this is Theorem 1 in Sands [10]. Assume now that \(|E| = n > 2 \) and that the theorem is true for generalized matrix rings with idempotent sets of cardinality less than \(n \). Let \(e \in E \) and set \(E' = \{ e, 1 - e \} \). Then \(R \) is a generalized matrix ring with idempotent set \(E' \) and so Sands' result implies that

\[
p(R) = p(eRe) + p(eR(1-e)) + p((1-e)Re) + p((1-e)R(1-e)).
\]

Since \((1-e)R(1-e) \) is a generalized matrix ring with idempotent set \(E_1 = E \setminus \{ e \} \), our induction hypothesis implies that

\[
p((1-e)R(1-e)) = \sum_{f, g \in E_1} p(fRg).
\]

Also, it is clear that \(p(eR(1-e)) = \sum_{f \in E_1} p(eRf) \) and \(p((1-e)Re) = \sum_{f \in E_1} p(fRe) \), so the result follows.

Let \(R \) be a generalized matrix ring with idempotent set \(E \). We say that the pair \((R, E)\) satisfies the left (respectively, right) annihilator condition if for all \(e, f \in E \), \(0 \neq x \in eRf \) implies that \(xfRRe \neq 0 \) (respectively, \(fRex \neq 0 \)). This concept is defined in [12] where right and left are interchanged.

Corollary 1.2. (Wauters and Jans [12]). The following conditions on a generalized matrix ring with idempotent set \(E \) are equivalent.

(a) \(R \) is semiprime.

(b) \((R, E)\) satisfies the left annihilator condition and \(eRe \) is semiprime for all \(e \in E \).

(c) \((R, E)\) satisfies the right annihilator condition and \(eRe \) is semiprime for all \(e \in E \). \(\square \)

2. The Goldie Conditions.

The right singular ideal of a ring \(S \) will be denoted by \(Z(S) \), and the right singular submodule of a right \(S \)-module \(M \) will be denoted by \(Z(M) \). So, if \(R \) is a generalized matrix ring with idempotent set \(E \) and \(e, f \in E \) with \(e \neq f \), then \(Z(eRe) \) is the right singular ideal of the ring \(eRe \) and \(Z(eRf) \) is the right singular submodule of the right \(fRf \)-module \(eRf \).

Proposition 2.1. Let \(R \) be a generalized matrix ring with idempotent set \(E \) and suppose that \((R, E)\) satisfies the left annihilator condition. Then

\[
Z(R) = \sum_{e, f \in E} Z(eRf).
\]

Proof. Let \(e, f \in E \) and suppose that \(x \in Z(R) \). Then \(xf \in Z(R) \), so there is an essential right ideal \(I \) of \(R \) such that \(xfI = 0 \). To show that \(xf \in Z(eRf) \) it suffices to show that \(fI \) is an essential right ideal of \(fRf \). Let \(A \) be a nonzero right ideal of \(fRf \). Because \(I \) is essential,
I \cap AR \neq 0$. Let $0 \neq u \in I \cap AR$. Since $I \cap AR$ is a right ideal there is an idempotent $g \in E$ such that $0 \neq ug \in I \cap AR$. and $ug = f_{ug}$ because $ug \in AR \subseteq fRF$. Since (R,E) satisfies the left annihilator condition, $0 \neq (f_{ug})gRF \subseteq (I \cap AR) \cap fRF \subseteq fRF \cap A$. It follows that

$$Z(R) \subseteq \sum_{e,f \in E} Z(eRF).$$

Conversely, suppose that $e,f \in E$ and $y = eyf \in Z(eRF)$. Then $yH = 0$ for some essential right ideal H of fRF. Let $J = \{r \in R : rf \in HR\}$. Clearly, J is a right ideal of R and $yJ = eyfJ = (eyf)J \subseteq (eyf)HR = 0$, so to show that $y \in Z(R)$ it is enough to show that J is essential in R. Let B be a nonzero right ideal of R. If $fB = 0$, then $B \subseteq J$ and so $B \cap J \neq 0$. Now assume $fB \neq 0$. Then $fBg \neq 0$ for some $g \in E$, and so the left annihilator condition implies that $fBf \neq 0$. So we see that fBf is a nonzero right ideal of fRF. Thus $fBf \cap H \neq 0$ and so $B \cap J \neq 0$ because $H \subseteq HR$.

COROLLARY 2.2. If R is a generalized matrix ring with idempotent set E such that (R,E) satisfies the left annihilator condition, then R is nonsingular if and only if eRe is nonsingular for all $e \in E$.

PROOF. In view of the proposition, we need only show that $Z(R) \neq 0$ implies that $Z(eRe) \neq 0$ for some $e \in E$. Suppose that $0 \neq x \in Z(R)$. Then $0 \neq exf \in Z(R)$ for some $e,f \in E$. The right annihilator condition implies that $(exf)fRe \neq 0$ and so $eRe \cap Z(R) \neq 0$. It now follows from the proposition that $Z(eRe) \neq 0$.

The right uniform dimension of a ring R (respectively, right R-module M) will be denoted by $d(R)$ (respectively, $d(M)$).

PROPOSITION 2.3. Let R be a generalized matrix ring with idempotent set E such that (R,E) satisfies the left annihilator condition. If $d(R) < \infty$ then $d(eRe) < \infty$ for all $e \in E$. Moreover, if R is semiprime and $d(eRe) < \infty$ for all $e \in E$, then $d(eRF) < \infty$ for all $e,f \in E$ and hence $d(R) < \infty$.

PROOF. Assume that $d(R) < \infty$, $e \in E$ and $\sum A_i$ is a direct sum of nonzero right ideals of eRe. To prove that $d(eRe) < \infty$ it is enough to show that $\sum A_iR$ is direct, and to accomplish this we need only show that $\sum A_iRf$ is direct for each $f \in E$. Suppose that $f \in E$ and $b_i \in A_iRf$ are such that $\sum b_i = 0$. Since $b_iRf \subseteq A_iRf$, and $\sum A_i$ is direct, $b_iRf = 0$ for all i. Thus the left annihilator condition implies that $b_i = 0$ for all i and hence $\sum A_iRf$ is direct.

Now assume that $d(eRe) < \infty$ for all $e \in E$ and suppose that $\sum N_i$ is a direct sum of nonzero fRF-submodules of eRF. Since $0 \neq N_i \subseteq eRF$ the left annihilator condition implies that $N_i, fRe \neq 0$, and each N_i, fRe is a right ideal of eRe. Let $K = N_i, fRe \cap \sum \{N_i, fRe : i \neq j\}$. Then $KeRF \subseteq N_i, \cap \sum \{N_i, : i \neq j\}$ and so $KeRF = 0$. Since $K^2 \subseteq KeRF$, $K^2 = 0$ and so $K = 0$ because eRe is semiprime by Corollary 2. Thus $\sum N_i, fRe$ is direct and so $d(eRF) \leq d(eRe)$. It follows that R has finite right uniform dimension as a right $(\sum eRe)$-module and so certainly $d(R) < \infty$.

From Corollary 2, Corollary 4 and Proposition 5 we obtain the following theorem.

THEOREM 2.4. Let R be a generalized matrix ring with idempotent set E. If R is semiprime right Goldie, then so too are the rings $eRe, e \in E$. Conversely, if (R,E) satisfies the left annihilator condition and eRe is semiprime right Goldie for all $e \in E$, then R is semiprime right Goldie.

3. **THE QUOTIENT RING.**

Let S and T be rings and let M be an $S - T$-bimodule. We say that M satisfies the right
bimodule Ore condition if for each $m \in M$ and each regular element $c \in S$ there is an $m_1 \in M$ and a regular $e_1 \in T$ such that $mc_1 = em_1$.

PROPOSITION 3.1. If R is a semiprime right Goldie generalized matrix ring with idempotent set E, then eRF satisfies the right bimodule Ore condition for all $e, f \in E$.

PROOF. Let $m \in eRF$ and suppose that c is regular in eRe. Define $\theta: eRF \rightarrow c^*RF$ by $\theta(x) = cx$ for all $x \in eRF$. Clearly θ is an fRF-module homomorphism and we now check that θ is a monomorphism. Suppose that $x \in eRF$ and $cx = 0$. Then $ceR = 0$ which implies that $xfRe = 0$ because c is regular. But then the left annihilator condition implies that $x = 0$ as required.

From Theorem 6 and Proposition 5 we know that eRF has finite right uniform dimension as a right fRF-module. Since eRF and c^*RF are isomorphic fRF-modules, $d(eRF) = d(cRF)$ and so c^*RF is an essential fRF submodule of eRF. Hence $\{y \in fRF: my \in c^*RF\}$ is an essential right ideal of fRF which, since fRF is semiprime right Goldie, must contain the required regular element e_1.

If S is semiprime right Goldie, $Q(S)$ denotes the classical right quotient ring of S and if M is a right S-module, $Q(M) = M \otimes_S Q(S)$. Using the right common denominator property of Ore sets we see that every element of $Q(M)$ is of the form $m \otimes c^{-1}$ where $m \in M$ and c is regular in S. In what follows we shall write mc^{-1} instead of $m \otimes c^{-1}$.

THEOREM 3.2. If R is a semiprime right Goldie generalized matrix ring with idempotent set E, then

$$Q(R) = \sum_{e, f \in E} Q(eRF).$$

PROOF. For each $e \in E, eRe$ embeds in $Q(eRe)$ and we now check that for $e, f \in E, e \neq f$, eRF embeds in $Q(eRF)$. Suppose that c is regular in fRF, $x \in eRF$ and $xc = 0$. Then $fRRe = 0$ and so $fRRe = 0$ because c is regular in fRF. Thus $cefRe = 0$ and hence $0 = ef = x$ since R is semiprime. This shows that eRF is a torsion free fRF-module and so eRF embeds in $Q(eRF)$.

Let $e, f, g \in E$, $x \in eRF$, $y \in fRG$ and suppose that c is regular in fRF and d is regular in gRG. Define $(xc^{-1})(yd^{-1}) = xy e_1^{-1}d^{-1}$ where y_1 and c_1 are obtained from the right bimodule Ore condition: $yc_1 = c_1 y$. It is straightforward to check that this multiplication is well-defined and that as a result $Q = \sum_{f \in E} Q(eRF)$ becomes a generalized matrix ring with idempotent set E.

We now show that Q is semiprime. It follows from Theorem 6 that eRe is semiprime right Goldie for all $e \in E$ and hence $Q(eRe)$ is semiprime for all $e \in E$. In view of Corollary 1.2, it suffices to show that (Q, E) satisfies the right annihilator condition. Let $yd^{-1} \in Q(fRe)$ be such that $Q(eRF)yd^{-1} = 0$. Then $(eRF)yd^{-1} = 0$ and so $(eRF)y = 0$. From Corollary 1.2 we see that (R, E) satisfies the right annihilator condition and so $y = 0$. Thus (Q, E) satisfies the right annihilator condition and hence Q is semiprime.

Let $e, f \in E, e \neq f$. From Proposition 2.3 we see that eRF has finite uniform dimension as a right fRF-module and so $Q(eRF)$ has finite uniform dimension as a right $Q(fRF)$-module. Since $Q(fRF)$ is semisimple Artinian it follows that $Q(eRF)$ is an Artinian $Q(fRF)$-module, and hence Q is right Artinian by an argument similar to ([7], 1.1.7). Since we have already seen that Q is semiprime, Q is a semisimple Artinian ring.

To complete the proof, we need only show that R is a right order in Q. Let $x \in Q$, $x = \sum_{e, f \in E} z(e, f)$ where $z(e, f) \in Q(eRF)$ for all $e, f \in E$. Using the right common denominator...
bimodule Ore condition if for each $m \in M$ and each regular element $c \in S$ there is an $m_1 \in M$ and a regular $c_1 \in T$ such that $mc_1 = cm_1$.

Proposition 3.1. If R is a semiprime right Goldie generalized matrix ring with idempotent set E, then eRF satisfies the right bimodule Ore condition for all $e, f \in E$.

Proof. Let $m \in eRF$ and suppose that c is regular in eRe. Define $\theta: eRF \rightarrow c_1RF$ by $\theta(x) = cx$ for all $x \in eRF$. Clearly θ is an RF-module homomorphism and we now check that θ is a monomorphism. Suppose that $x \in eRF$ and $cx = 0$. Then $cxtRe = 0$ which implies that $seRF = 0$ because c is regular. But then the left annihilator condition implies that $x = 0$ as required.

From Theorem 6 and Proposition 5 we know that eRF has finite right uniform dimension as a right RF-module. Since eRF and $ceRF$ are isomorphic RF-modules, $d(ceRF) = d(eRF)$ and so $ceRF$ is an essential RF submodule of eRF. Hence $\{y \in RF: my \in ceRF\}$ is an essential right ideal of RF which, since RF is semiprime right Goldie, must contain the required regular element c_1.

If S is semiprime right Goldie, $Q(S)$ denotes the classical right quotient ring of S and if M is a right S-module, $Q(M) = M \otimes_S Q(S)$. Using the right common denominator property of Ore sets we see that every element of $Q(M)$ is of the form $m \otimes c^{-1}$ where $m \in M$ and c is regular in S. In what follows we shall write mc^{-1} instead of $m \otimes c^{-1}$.

Theorem 3.2. If R is a semiprime right Goldie generalized matrix ring with idempotent set E, then

$$Q(R) = \bigoplus_{e, f \in E} Q(eRF).$$

Proof. For each $e \in E, eRe$ embeds in $Q(eRe)$ and we now check that for $e, f \in E, e \neq f, eRF$ embeds in $Q(eRF)$. Suppose that c is regular in RF, $x \in eRF$ and $xc = 0$. Then $fRexc = 0$ and so $fRex = 0$ because c is regular in RF. Thus $sefRe = 0$ and hence $0 = ef = x$ since R is semiprime. This shows that eRF is a torsion free RF-module and so eRF embeds in $Q(eRF)$. Let $e, f, g \in E$, $x \in eRF$, $y \in RFg$ and suppose that c is regular in RF and d is regular in gRg. Define $(x^{-1})(yd^{-1}) = y_1c_1^{-1}d^{-1}$ where y_1 and c_1 are obtained from the right bimodule Ore condition: $yc_1 = cy_1$. It is straightforward to check that this multiplication is well-defined and that as a result $Q = \bigoplus_{f \in E} Q(eRF)$ becomes a generalized matrix ring with idempotent set E.

We now show that Q is semiprime. It follows from Theorem 6 that eRe is semiprime right Goldie for all $e \in E$ and hence $Q(eRe)$ is semiprime for all $e \in E$. In view of Corollary 1.2, it suffices to show that (Q, E) satisfies the right annihilator condition. Let $yd^{-1} \in Q(fRF)$ be such that $Q(eRF)yd^{-1} = 0$. Then $(eRF)yd^{-1} = 0$ and so $(eRF)y = 0$. From Corollary 1.2 we see that (R, E) satisfies the right annihilator condition and so $y = 0$. Thus (Q, E) satisfies the right annihilator condition and hence Q is semiprime.

Let $e, f \in E, e \neq f$. From Proposition 2.3 we see that eRF has finite uniform dimension as a right RF-module and so $Q(eRF)$ has finite uniform dimension as a right $Q(fRF)$-module. Since $Q(R)$ is semisimple Artinian it follows that $Q(eRF)$ is an Artinian $Q(fRF)$-module, and hence Q is right Artinian by an argument similar to ([7], 1.1.7). Since we have already seen that Q is semiprime, Q is a semisimple Artinian ring.

To complete the proof, we need only show that R is a right order in Q. Let $x \in Q$, $x = \sum_{e, f \in E} x(e, f)$ where $x(e, f) \in Q(eRF)$ for all $e, f \in E$. Using the right common denominator
property we can find, for each $f \in E$, an $a_f \in fRf$ and elements $y(e,f) \in eRF$ such that for all $e \in E, x(e,f) = y(e,f)a_f^{-1}$. Let $y = \sum_{e,f \in E} y(e,f)$ and $z = \sum_{f \in E} a_f$. Then $x = yz^{-1}$ and so R is a right order in Q.

Let R be a semiprime right Goldie ring with idempotent e. Clearly, R is a generalized matrix ring with idempotent set $E = \{e, 1-e\}$ and so it follows from Theorem 2.4 that eRe is semiprime right Goldie. This result seems to have been well-known for some time. Also, it follows from Theorem 3.2 that the classical right quotient ring of eRe is eQe where Q is the classical right quotient ring of R. This result is due to Small [11].

ACKNOWLEDGEMENT. This paper was written while the first author was on sabbatical at Dalhousie University. He would like to thank the Department of Mathematics, Statistics and Computing Science for its warm hospitality.

An earlier version of this paper included an unnecessary faithfulness assumption in Theorem 2.4. The authors are grateful to Michael V. Clase who supplied them with a preprint which lead to the removal of that assumption.

REFERENCES

2. GORDON, R. and SMALL, L.W., Piecewise domains, J. Algebra 23 (1972), 553-564.