NEW CHARACTERIZATIONS FOR HANKEL TRANSFORMABLE SPACES OF ZEMANIAN

J. J. BETANCOR
Departamento de Analisis Matematico
Facultad de Matematicas
Universidad de La Laguna
38271 La Laguna, Tenerife
Islas Canarias, SPAIN

(Received April 11, 1994 and in revised form February 25, 1995)

ABSTRACT. In this paper we obtain new characterizations of the Zemanian spaces H_μ and H'_μ.

KEY WORDS AND PHRASES. Hankel transform, distribution, Zemanian spaces

AMS SUBJECT CLASSIFICATION CODE. 46F12

A. H. Zemanian [7, Ch. 5] introduced the space $H_\mu (\mu \in \mathbb{R})$ of functions as follows: a complex valued smooth function $\phi(x)$, $x \in I = (0, \infty)$, is in H_μ if, and only if, the quantity

$$\gamma_{n,k}^\mu (\phi) = \sup_{x \in I} \left| x^n (x^{-1}D)^k (x^{-\mu-1/2} \phi(x)) \right| < \infty$$

is finite, for every $n, k \in \mathbb{N}$. This space endowed the topology generated by $\{\gamma_{n,k}^\mu\}_{n,k \in \mathbb{N}}$ is a Fréchet space. In the sequel we will refer to the above topology as the usual topology of H_μ. Zemanian introduced the space H'_μ to extend the Hankel integral transformation defined by

$$\tilde{h}_\mu (x) = \int_0^\infty (xt)^{\mu/2} J_\mu (xt) \phi(t) dt,$$

where J_μ denotes the Bessel function of the first kind and order μ, to generalized functions. He proved that h_μ is an automorphism of H_μ provided that $\mu \geq -\frac{1}{2}$. The generalized Hankel transform \tilde{h}_μ of $f \in H'_\mu$, the dual space of H_μ, is defined as the transposed of H'_μ through

$$\langle \tilde{h}_\mu f, \phi \rangle = \langle f, h_\mu \phi \rangle \quad \text{for} \quad \phi \in H_\mu.$$

Thus if $\mu \geq -\frac{1}{2}$, \tilde{h}_μ is an automorphism of H'_μ when this space is equipped with the weak* topology or with the strong topology.

In [2] J. J. Betancor and I. Marrero have studied the main topological properties of the spaces H_μ and H'_μ. Amongst other results, it is established (Theorem 3.3) that the space H_μ, $\mu \geq -\frac{1}{2}$, is constituted by all those complex valued smooth functions $\phi(x)$, $x \in I$, such that

$$\tau_{n,k}^\mu (\phi) = \sup_{x \in I} |x^n N_{\mu+k-1} \cdots N_{\mu} \phi(x)| < \infty$$

for every $n, k \in \mathbb{N}$. Moreover, the system of seminorms $\{\tau_{n,k}^\mu\}_{n,k \in \mathbb{N}}$ generates of H_μ its usual topology. Moreover in [4] they gave new descriptions for the usual topology of H_μ through L_2-norms.

A. H. Zemanian [7, p. 134] defined the space O formed by all those complex valued smooth functions $v(x)$, $x \in I$, satisfying that for every $k \in \mathbb{N}$ there exists $n_k \in \mathbb{N}$ such that $(1 + x^2)^{n_k} (x^{-1}D)^k v(x)$ is a bounded function on I. He proved that O is a space of multiplier of H_μ. Recently J. J. Betancor and I. Marrero [2, Theorems 2.3 and 4.9] have characterized O as the space of multipliers of H_μ and H'_μ.

In this paper we characterize the smooth complex valued functions in H_μ, $\mu \geq -\frac{1}{2}$, as the ones satisfying

$$Z_n (\phi) = \sup_{x \in I} |x^n \phi(x)| < \infty \quad (1)$$

Moreover in [4] they gave new descriptions for the usual topology of H_μ through L_2-norms.
and
\[y_n^\mu(\phi) = \sup_{x \in I} |N_{\mu-n-1}\ldots N_\mu \phi(x)| < \infty \] (2)
for every \(n \in \mathbb{N} \). Moreover we prove that the usual topology of \(H^\mu \) can be defined by the family of seminorms \(\{ \Lambda_n, y_n^\mu \}_{n \in \mathbb{N}} \) and a new characterization for the elements of \(H^\mu \) is obtained. In the sequel we will assume that \(\mu \geq -\frac{1}{2} \).

Proposition 1. A complex valued smooth function \(\phi(x), \ x \in I \), is in \(H^\mu \) if, and only if, \(\phi \) satisfies (1) and (2) for every \(n \in \mathbb{N} \).

Proof. It is clear that if \(\phi \in H^\mu \) then \(\phi \) satisfies (1) and (2) for every \(n \in \mathbb{N} \).

Let now \(\phi \) be a complex valued smooth function defined on \(I \). To see that (1) and (2) \((n \in \mathbb{N})\) are sufficient conditions for \(\phi \) belongs to \(H^\mu \) we proceed by induction. Suppose, as induction hypothesis, that
\[\sup_{x \in I} |x^{m}N_{\mu+n-1}\ldots N_\mu \phi(x)| < \infty , \quad m \in \mathbb{N} \quad \text{and} \quad \mu \in \mathbb{N} , \quad 0 \leq n < \ell \]
for certain \(\ell \in \mathbb{N}, \ \ell \geq 1 \).

By using partial integration we can obtain
\[
\|x^mN_{\mu-\ell-1}\ldots N_\mu \phi(x)\|^2_2 = \int_0^\infty |x^mN_{\mu-\ell-1}\ldots N_\mu \phi(x)|^2 \, dx \\
= \int_0^\infty x^{2m}N_{\mu-\ell-1}\ldots N_\mu (\phi(x))N_{\mu-\ell-1}\ldots N_\mu (\overline{\phi}(x)) \, dx \\
= \int_0^\infty (Dx^{-1})^\ell(x^{2m+\mu+\ell/2}N_{\mu-\ell-1}\ldots N_\mu (\phi(x)))x^{-\mu-1/2}\overline{\phi}(x) \, dx
\]
for every \(m \in \mathbb{N}, \ \ell < 2m + 2 \), because
\[
[Dx^{-1}]^\ell(x^{2m+\mu+\ell+1/2}N_{\mu-\ell-1}\ldots N_\mu (\phi(x)))(x^{-1}D)^{-\ell-1}(x^{-\mu-1/2}\overline{\phi}(x)) = 0
\] (3)
for each \(i, m \in \mathbb{N}, \ 0 \leq i < \ell < 2m + 2 \). In effect, if \(m, i \in \mathbb{N}, \ 0 \leq i < \ell < 2m + 2 \) then Leibniz's rule leads to
\[
(Dx^{-1})^\ell(x^{2m+\mu+\ell+1/2}N_{\mu-\ell-1}\ldots N_\mu (\phi(x)))(x^{-1}D)^{-\ell-1}(x^{-\mu-1/2}\overline{\phi}(x)) \\
= \sum_{j=0}^\ell a_j x^{2m+2\ell+2m+1/2}(x^{-1}D)^{\ell+i-1}(x^{-\mu-1/2}\overline{\phi}(x)) \\
= \sum_{j=0}^\ell a_j x^{2m+1-i}N_{\mu-\ell+i-j-1}\ldots N_\mu (\phi(x))N_{\mu-\ell+i-2}\ldots N_\mu (\phi(x))
\]
where \(a_j, j \in \mathbb{N}, \ 0 \leq j \leq i \), are suitable real numbers, and by virtue of induction hypothesis (3) follows.

Most straightforward manipulations allow us to write
\[
(Dx^{-1})^\ell(x^{2m+\mu+\ell+1/2}N_{\mu-\ell-1}\ldots N_\mu (\phi(x))x^{-\mu-1/2}\overline{\phi}(x)) = \sum_{j=0}^\ell a_j x^{2m+1-i}N_{\mu+2\ell-j-1}\ldots N_\mu (\phi(x))
\]
with \(m \in \mathbb{N} \) and \(a_j \in \mathbb{R}, \ j \in \mathbb{N}, \ 0 \leq j \leq \ell \).

Hence we can establish
\[
\|x^mN_{\mu-\ell-1}\ldots N_\mu \phi(x)\|^2_2 \leq C_1 \sum_{j=0}^\ell \int_0^\infty |x^{2m-j}\overline{\phi}(x)| |N_{\mu+2\ell-j-1}\ldots N_\mu \phi(x)| \, dx \\
\leq C_2 \sum_{j=0}^\ell \sup_{x \in I} |(1 + x^2)x^{2m-j}\phi(x)| \sup_{x \in I} |N_{\mu+2\ell-j-1}\ldots N_\mu \phi(x)| < \infty ,
\] (4)
provided that \(m \in \mathbb{N}, \ 2m \geq \ell \). Here \(C_{i}, \ i = 1, 2 \), denotes suitable positive constants.

Assume now that \(m \in \mathbb{N}, \ 2m < \ell \). We have

\[
\|x^{m}N_{\mu+\ell-1}...N_{\mu}f(x)\|_{2}^{2} = \left(\int_{0}^{1} + \int_{1}^{\infty} \right) |x^{m}N_{\mu+\ell-1}...N_{\mu}f(x)|^{2} dx \\
\leq \int_{0}^{1} |N_{\mu+\ell-1}...N_{\mu}f(x)|^{2} dx + \int_{1}^{\infty} |x^{\ell}N_{\mu+\ell-1}...N_{\mu}f(x)|^{2} dx.
\]

Therefore, by invoking (4) and the induction hypothesis we infer that

\[
\|x^{m}N_{\mu+\ell-1}...N_{\mu}f(x)\|_{2} < \infty, \quad \text{when} \quad m \in \mathbb{N}, \ 2m \leq \ell.
\]

Thus it is concluded that \(\|x^{m}N_{\mu+\ell-1}...N_{\mu}f(x)\|_{2} < \infty, \ m \in \mathbb{N} \).

Also, for every \(m \in \mathbb{N}, \ m \geq 1, \) and \(x \in I \),

\[
(x^{m}N_{\mu+\ell-1}...N_{\mu}f(x))^{2} = \int_{0}^{\infty} D_{t}^{2}(t^{m}N_{\mu+\ell-1}...N_{\mu}f(t))^{2} dt \\
= \int_{0}^{\infty} 2t^{m}N_{\mu+\ell-1}...N_{\mu}f(t)([m + \mu + \frac{1}{2}] + e(t))^{2} N_{\mu+\ell-1}...N_{\mu}f(t) + t^{m}N_{\mu+\ell}...N_{\mu}f(t)) dt.
\]

Hence if \(m \in \mathbb{N}, \ m \geq 1, \) and \(x \in I \) by using Holder's inequality we can find \(C \geq 0 \) such that

\[
|x^{m}N_{\mu+\ell-1}...N_{\mu}f(x)|^{2} \leq C \left(\|x^{m}N_{\mu+\ell-1}...N_{\mu}f(x)\|_{2}^{2} + \|x^{m-1}N_{\mu+\ell-1}...N_{\mu}f(x)\|_{2}^{2} + \sup_{x \in I} |N_{\mu+\ell-1}...N_{\mu}f(x)| \right)
\]

and then

\[
\sup_{x \in I} |x^{m}N_{\mu+\ell-1}...N_{\mu}f(x)| < \infty, \ m \in \mathbb{N}.
\]

Thus the proof is finished.

The last proposition allows us to define the usual topology of \(H_{\mu} \) through a family of seminorms simpler than \(\{ \gamma_{m,k} \}_{m,k \in \mathbb{N}} \).

PROPOSITION 2. The usual topology of \(H_{\mu} \) is defined by the system of seminorms \(\{Z_{n}, y_{m}^{\mu} \}_{n \in \mathbb{N}} \).

PROOF. It is clear that the topology generated by \(\{ \gamma_{m,k}^{\mu} \}_{m,k \in \mathbb{N}} \) is finer than the one defined by \(\{Z_{n}, y_{m}^{\mu} \}_{n \in \mathbb{N}} \) on \(H_{\mu} \). Moreover by proceeding in a way similar to A. H. Zemanian [7, Lemma 5.2-2] we can prove that \(H_{\mu} \) endowed with the topology generated by \(\{Z_{n}, y_{m}^{\mu} \}_{n \in \mathbb{N}} \) is a Fréchet space. Hence the desired result is an immediate consequence of the Open Mapping Theorem [6, Corollary 2.12].

We now prove a new characterization for the elements of \(H_{\mu} \), the dual space of \(H_{\mu} \). The procedure employed is analogous to the one used by the author [1] and by J. J. Betancor and I. Marrero [2].

PROPOSITION 3. Let \(f \) be a linear functional defined on \(H_{\mu} \). Then \(f \) is in \(H_{\mu}' \) if, and only if, there exist \(r \in \mathbb{N} \) and \(f_{k}, \ g_{k} \in L_{\infty}(0, \infty) \) (the space of essentially bounded functions on \((0, \infty) \)), \(k \in \mathbb{N}, \ 0 \leq k \leq r \), such that

\[
f = \sum_{k=0}^{r} h_{\mu}^{k}(x^{k}f_{k} + x^{-\mu+1/2}(x^{-1}D)^{k}x^{k+\mu-1/2}g_{k}). \quad (5)
\]

PROOF. Let \(f \in H_{\mu}' \). By virtue of a well-known result ([7, Theorem 1.8-1]) there exist \(r \in \mathbb{N} \) and \(C > 0 \) such that

\[
|\langle f, \phi \rangle| \leq C \max_{0 \leq k \leq r} \{Z_{k}(\phi), y_{k}^{\mu}(\phi)\}, \quad \phi \in H_{\mu}.
\]

According to [7, Lemma 5.4-1(2), (3) and Theorem 5.4-1] and since \(z^{1/2}J_{\mu}(z) \) is a bounded function on \(I \) for every \(k \in \mathbb{N} \) one has
\[
\sup_{x \in I} |x^k \phi(x)| = \sup_{x \in I} |x^k h_\mu(h_\mu \phi)(x)| \leq C \int_0^\infty |N_{\mu + k - 1} \ldots N_{\mu} (h_\mu \phi)(t)| \, dt \tag{7}
\]

and
\[
\sup_{x \in I} |N_{\mu + k - 1} \ldots N_{\mu} \phi(x)| = \sup_{x \in I} |N_{\mu + k - 1} \ldots N_{\mu} h_\mu(h_\mu \phi)(x)| \leq C \int_0^\infty |t^k (h_\mu \phi)(t)| \, dt \tag{8}
\]

for a suitable \(C > 0 \).

The linear mapping
\[
j : H_\mu \to J H_\mu \subset L_1(0, \infty)^{2r+2}
\]
\[\phi \to (x^k h_\mu \phi, N_{\mu + k - 1} \ldots N_{\mu} h_\mu \phi)_{k=0}^r\]
is one to one because \(h_\mu \) is an automorphism of \(H_\mu \) ([7, Theorem 5.4-1]). Here \(L_1(0, \infty) \) denotes the usual Lebesgue space of order 1.

On the other hand, the inequalities (6), (7) and (8) imply that the linear mapping
\[
L : J H_\mu \subset L_1(0, \infty)^{2r+2} \to \mathbb{C}
\]
\[(x^k h_\mu \phi, N_{\mu + k - 1} \ldots N_{\mu} h_\mu \phi)_{k=0}^r \to \langle f, \phi \rangle\]
is continuous when \(J H_\mu \) is endowed with the topology induced by \(L_1(0, \infty)^{2r+2} \). Hence, by invoking the Hahn-Banach Theorem \(L \) can be extended to \(L_1(0, \infty)^{2r+2} \) as a member of \((L_1(0, \infty)^{2r+2})' \), the dual space of \(L_1(0, \infty)^{2r+2} \). Since, as it is well known, \(L_1(0, \infty)' = L_\infty(0, \infty) \) there exist \(f_k, g_k \in L_\infty(0, \infty), k \in \mathbb{N}, 0 \leq k \leq r \), such that
\[
\langle f, \phi \rangle = \sum_{k=0}^r \langle (f_k, x^k h_\mu \phi) + (g_k, x^{k+1/2} (x^{-1} D)^k (x^{-1/2} \phi)) \rangle, \quad \phi \in H_\mu.
\]

Therefore
\[
f = \sum_{k=0}^r h_\mu (x^k f_k + (-1)^k x^{k+1/2} (x^{-1} D)^k x^{k+1/2} g_k).
\]

Thus the proof of necessity if finished.

Conversely, if \(f \) is a linear functional defined on \(H_\mu \) by (5) for certain \(r \in \mathbb{N} \) and \(f_k, g_k \in L_\infty(0, \infty), k \in \mathbb{N}, 0 \leq k \leq r \), then
\[
|\langle f, \phi \rangle| \leq C \sum_{k=0}^r \|f_k\|_\infty \sup_{x \in I} |(1 + x^2) x^k (h_\mu \phi)(x)| + \|g_k\|_\infty \sup_{x \in I} |(1 + x^2) N_{\mu + k - 1} \ldots N_{\mu} (h_\mu \phi)(x)|
\]

for \(\phi \in H_\mu \), where \(\|\cdot\|_\infty \) denotes the usual norm in \(L_\infty(0, \infty) \). Hence, according to [7, Theorem 5.4-1] and [2, Theorem 3.3], \(f \) is in \(H_\mu' \).

REFERENCES

Submit your manuscripts at
http://www.hindawi.com