THE FIXED POINT INDEX FOR ACCRETIVE MAPPING* WITH K—SET CONTRACTION PERTURBATION IN CONES

YU-QING CHEN

Department of Mathematics
Sichuan University
610064 Chengdu
P. R. China

(Received July 21, 1993 and in revised form August 15, 1994)

ABSTRACT: Let P be a cone in Banach space E. A, K are two mappings in P, A is accretive, K is k—set contraction, then a fixed point index is defined for mapping —A+K, some fixed point theorems are also deduced.

KEY WORDS AND PHRASES: accretive mapping, k—set contraction, cone, fixed point index.

1992 AMS SUBJECT CLASSIFICATION CODES: 47H10, 47H05, 54H25

1. INTRODUCTION

The fixed point index is an important tool in solving positive solutions of nonlinear equations in ordered Banach space. So what nonlinear mapping could be defined a index theory becomes a very interesting problem, many authors have studied this problem, see [3], [8], [10], [12], [13]. In this paper. E is a Banach space, P⊂E is a closed cone, i.e P is closed convex, and

\[\lambda P \subset P, \forall \lambda \geq 0, P \cap (-P) = \{0\}; \]

\[\Omega \subset E \] is a nonempty open bounded subset. Let \(A: D(A) \subset P \rightarrow 2^P \) be a multivalued accretive mapping, i.e

\[\| x - y \| \leq \| x - y + \lambda(a_1 - a_2) \|, x, y \in D(A), a_1, a_2 \in A_x, a_1 \neq A_x; \]

\[K =zp \subset P \] is a strict k—set contraction, i.e \(0 < k < 1 \); If

\[(I + A)(D(A)) = P, \text{ and } x \notin -Ax + Kx, \forall x \in \partial \Omega \cap D(A), \]

then a fixed point index is defined for \(-A+K\), when K is compact, such type mapping were studied by [4], [5]. [14], [15].

2. MAIN RESULTS

Let E be a Banach space. P⊂E is a closed cone, *≤* is the order induced by P in E, i.e \(x \leq y \) if and only if \(y - x \in P \).

PROPOSITION 1. \(A: D(A) \subset P \rightarrow 2^P \) is a continuous accretive mapping, for each \(x \in P \), there exists \(\beta(x) > 0 \), such that \(Ax \leq \beta(x) \cdot x \), then (\(I + A \))P = P, \(\forall \lambda > 0 \).

PROOF. For each \(x \in P \), consider the following differential equation

\[\begin{align*}
 \dot{x}(t) &= -(I + A)x(t) + \epsilon, t \in (0, +\infty) \\
 x(0) &= u \in P
 \end{align*} \] (\(2 \cdot 1 \))

For each \(x \in P \), since \(Ax \leq \beta(x) \cdot x \), so there exists \(W(x) \in P \), such that \(\beta(x) \cdot x = Ax + W(x) \).

So we have \(x + \epsilon(-\lambda x - Ax + z) = (1 - \epsilon\lambda - \epsilon\beta(x))x + \epsilon W(x) + \epsilon z \).

For sufficient small \(\epsilon > 0 \), such that \(1 - \epsilon\lambda - \epsilon\beta(x) > 0 \), then \((1 - \epsilon\lambda - \epsilon\beta(x))x + \epsilon W(x) + \epsilon z \in P \).

Hence

\[\lim_{\epsilon \rightarrow 0} \frac{1}{\epsilon} \rho(x + \epsilon(-\lambda x - Ax + z), P) = 0, \forall x \in P; \]
by (6), we know (El) has only one solution. Let \(x(t,u) \) be the unique solution of (El) with \(x(0) = u \).

Now, define a mapping \(B_1 : P \to P \) as following:

\[
B_1u = x(T,u), u \in P, \quad T > 0 \text{ a constant;}
\]

For \(u, v \in P \), let \(\mathcal{D}(t) = \| x(t,u) - x(t,v) \| \), then

\[
\mathcal{D}(t) D(t) \leq \| x'(t,u) - x'(t,v) \| = \| x(t,u) - x(t,v) \|
\]

where \(D(t) = \lim_{h \to 0^+} \mathcal{D}(t) D(t-h) / h \); see (63P,36)

\[
D(t) D(t) \leq -\lambda x(t,u) - Ax(t,u) + \lambda x(t,v) + Ax(t,v) \cdot x(t,u) - x(t,v)
\]

\(\lambda \) is accretive, so

\[
D(t) D(t) \leq \| -Ax(t,u) - Ax(t,v) \| \leq 0
\]

Therefore

\[
\mathcal{D}(t) D(t) \leq \lambda x(t,u) - x(t,v)
\]

So we have \(\| B_1u - B_1v \| \leq \| u - v \| \)

Hence, \(B_1 \) has a unique fixed point \(u_0 \). This implies \(x'(t,u_0) = 0 \), \(t > 0 \).

So \(\mathcal{O} = -Au_0 - A_0 + \mathcal{O} \in \mathcal{D}(A) \).

This complete the proof.

In the following, we assume \(A : D(A) \subset P \to \mathbb{R}^n \) is a multivalued accretive mapping, \((A+I) D(A) = P \), it's well known \((A+I) \) is nonexpansive (see(4)).

Let \(\varnothing \) be a open bounded subset of \(E, K, \mathcal{D} \in P \) is a strict \(k \)-set contraction, i.e \(k \in (0,1) \); Suppose \(D(A) \cap \varnothing \neq \varnothing \), and \(x \in A + K, x \in \mathcal{D} \cap D(A) \), then

\[
x \notin (A+K) - K, x \notin \mathcal{D} \cap D(A)
\]

\((A+K) \) is also a strict \(k \)-set contraction, so the fixed point index \(i((A+K), \varnothing \cap P) \) is well defined, see [1], (8). Now, we define

\[
i((A+K), \mathcal{D}(A)) = i((I+A) - K, \varnothing \cap P)
\]

THEOREM 1: (a) If \(\mathcal{O} = B(0,r), Kx = x, x \in B(0,r) \cap P \), then

\[
i((A+K), B(0,r) \cap D(A)) = 1
\]

(b) Suppose \(\mathcal{O} = \mathcal{O}, \mathcal{O} = \mathcal{O}, \mathcal{O} = \mathcal{O}, \mathcal{O} = \mathcal{O} \), then

\[
i((A+K), \mathcal{D}(A)) = i((A+K), \mathcal{D}(A)) + i((A+K), \mathcal{O} \cap D(A))
\]

(c) Let \(H(t,x) : \{0,1\} \times \varnothing \cap D(A) \to \mathbb{R}^n \), if \(H(t,x) \) is uniformly continuous in \(x \) for each \(t \), and for each \(t \in \{0,1\} \). \(H(t,.) \) is a strict \(k \)-set contraction, \(k \) doesn't depend on \(t \), suppose

\[
x \notin -A + H(t,x), \forall x \in \mathcal{D}(A), t \in \{0,1\}
\]

then \(i((A+K), \mathcal{D}(A)) \) doesn't depend on \(t \).

(d) If \(i((A+K), \mathcal{D}(A)) = 0 \), then \(x \in -A + Kx \) has a solution in \(\mathcal{D}(A) \), i.e \(-A + K \) has a fixed point.

PROOF: by the definition, (b), (c), (d) is obvious. (see(1)or (8))

Now, we prove (a). First, we have

\[
0 \in D(A), 0 \in A0 \quad (2.2)
\]

In fact, \((A+I) D(A) = P \), so there exists \(x \in D(A), a \in A + Kx \), such that \(x + a = 0 \).

Since \(x \geq 0, a \geq 0 \), So we must have \(x + a = 0 \). Hence

\[
(A+I) - 0 = 0 \quad (2.3)
\]

by the definition, we need to prove

\[
i((I+A) - K, \mathcal{D}(A)) = 1, \mathcal{O} = B(0,r)
\]

(2.4)

So \(i((A+I) - K, \mathcal{D}(A)) = 1 \). In the following, \(K, A, \varnothing \) are same as above.

LEMMA 1: If \(Kx \in \varnothing, \forall x \in \mathcal{D}(A) \), then

\[
i((A+K), \mathcal{D}(A)) = 1
\]

PROOF: Let \(H(t,x) = tKx, t \in \{0,1\}, x \in \mathcal{D}(A) \). If \(x \in -A + tKx \) for some \(x \in \mathcal{D}(A) \) and \(t \in \{0,1\} \).
then \(t \neq 0 \) (otherwise, we get \(t = 0 \in \mathcal{O} \), a contradiction)

So \(K_t \supseteq -x \), a contradiction to \(Kx \ni x \).

Hence, \(H(t, x) \) satisfy all the conditions of (c) in theorem 1.

So

\[
\tau (-A + K, \mathcal{O} \cap D(A)) = \tau (-A + 0, \mathcal{O} \cap D(A))
\]

by (2, 3), we have \((I + A)^{-1} = 0 \in \mathcal{O} \cap P\)

So \(\tau (I + A)^{-1} = 0, \mathcal{O} \cap P = 1 \), and we get

\[
\tau (-A - 0, \mathcal{O} \cap D(A)) = 1
\]

Hence

\[
\tau (-A + K, \mathcal{O} \cap D(A)) = 1
\]

COROLLARY 1: If \(0 \in \mathcal{O} \), and \(Kx \ni x \), then \(-A + K\) has a fixed point in \(\mathcal{O} \cap D(A) \)

PROOF: It’s obvious \(Kx \ni x \), \(x \in \mathcal{O} \cap P \). By lemma 1,

\[
\tau (-A + K, \mathcal{O} \cap D(A)) = 1
\]

Theorem 1, (d) implies \(-A + K\) has a fixed point in \(\mathcal{O} \cap D(A) \).

LEMMA 2: Let \(u_0 \neq 0 \), suppose \(x - tu_0, -A(x - tu_0) + Kx = 0 \), \(x \in \mathcal{O} \cap P \), and \(x - tu_0 \in D(A) \), for \(t \geq 0 \); Then

\[
\tau (-A + K, \mathcal{O} \cap D(A)) = 0
\]

PROOF: Suppose \(\tau (I + A)^{-1} K = 0 \).

For each \(t > 0 \), let \(H(t, x) = (I + A)^{-1} K + tu_0 \), \(x \in \mathcal{O} \cap P, t \in (0, 1) \);

It’s obvious \(H(t, x) \) is uniformly continuous in \(x \) for each \(t \), and \(H(t, \cdot) \) is strict \(k \)-set contraction for each \(t \).

By (1), (see also (8)). We get

\[
\tau ((I + A)^{-1} K + tu_0, \mathcal{O} \cap P) = \tau (I + A)^{-1} K, \mathcal{O} \cap P = 0
\]

So there exists \(x \), \(x \in \mathcal{O} \cap P \), such that

\[
x = (I + A)^{-1} K x = tu_0
\]

Letting \(t \to \infty \), the left side of (2.6) is bounded, but the right side of (2.6) is unbounded, a contradiction.

We must have \(\tau (-A + K, \mathcal{O} \cap D(A)) = 0 \).

THEOREM 2: If \(A, D(A) \subseteq P \to \mathbb{R}^2 \) is an accretive mapping, \((I + A)D(A) = P, \mathcal{O}_1, \mathcal{O}_2\) are two open bounded subsets of \(E \), \(0 \in \mathcal{O}_1 \subseteq \mathcal{O}_1, K, \mathcal{O} \cap P \), is a strict \(k \)-set contraction mapping, \(0 \neq u_0 \in P \)

(i) For each \(x \in \mathcal{O}_1, x \notin Kx \), for each

\[
x \in \mathcal{O}_1 \cap P, x - tu_0 \in D(A), t \geq 0, x - tu_0, -A(x - tu_0) + Kx
\]

(ii) For each \(x \in \mathcal{O}_1, x \notin Kx \), for each

\[
x \in \mathcal{O}_1 \cap P, x - tu_0 \in D(A), t \geq 0, x - tu_0, -A(x - tu_0) + Kx
\]

Suppose either (i) or (ii) is satisfied, then \(-A + K\) has a fixed point in \((\mathcal{O}_1 - \mathcal{O}_2) \cap D(A)\)

PROOF: Suppose condition (i) is satisfied by, Lemma 1, we have

\[
\tau (-A + K, \mathcal{O}_1) = 1
\]

by Lemma 2, we have

\[
\tau (-A + K, \mathcal{O}_1) = 1
\]

by (b) of Theorem 1, and (6), (7). We get

\[
\tau (-A + K, \mathcal{O}_1 - \mathcal{O}_2) = 1
\]

by (d) of Theorem 1, we know \(-A + K\) has a fixed point in \((\mathcal{O}_1 - \mathcal{O}_2) \cap D(A)\).

If (ii) is satisfied, the proof is similar. We complete the proof.

THEOREM 3: For each \(x \in \mathcal{O} \cap D(A), \| Kx \| \leq \| x \|, \) and \(0 \in \mathcal{O}_1 \), then \(-A + K\) has a fixed point in \(\mathcal{O} \cap D(A) \)

PROOF: We may suppose

\[
x \notin A x + K x, \mathcal{O} \subseteq D(A)
\]

Let \(H(t, x) = K x \), \(x \in \mathcal{O} \cap P, t \in (0, 1) \);

It’s obvious \(H(t, x) \) is uniformly continuous in \(x \) and \(H(t, \cdot) \) is strict \(k \)-set contraction for each \(t \).

We show that

\[
x \notin A x + H(t, x), x \in \mathcal{O} \cap D(A), t \in (0, 1)
\]

If \(x \in A x + H(t, x) \) for some \(x \in \mathcal{O} \cap D(A), t \in (0, 1) \), then \(x = (I + A)^{-1} H(t, x) \).
Since \((I+A)^{\dagger}\) is nonexpansive and \((I+A)^{\dagger} 0=0.\) So
\[
\| x \| \leq \| H(t,x) \| = \| tKx \| \leq t \| x \|
\]
Therefore \(t=1,\) contradict to (8) by (c) of Theorem 1.

\[
(1-A+K, D(A)) = t(1-A+K, D(A))
\]
and (2.5) implies \(t(-A+K, D(A)) = 1.\)

by (d) of Theorem 1, \(-A+K\) has a fixed point in \(D(A).\)

THEOREM 4: If \(0,\ D(A).\)

PROOF: We may assume \(x \in \cdot A x + K x, x \in D(A).\)

Let \(H(t,x) = tKx, t \in [0,1].\)

If \(x \in -A x + t K x\) for some \(t \in [0,1], x \in D(A),\) then \(tKx \in x + A x\)

So there exists \(a \in A x,\) such that \(tKx = x + a.\) We have \(\| K x \| \leq t \| K x \|\)

By the assumption (2.11), \(t \neq 1,\) we must have \(K x = 0, x + a = 0\)

So we have \(x \in -A x + H(t,x), x \in D(A), t \in [0,1].\)

The following proof is similar to that of Theorem 3. This end the proof.

REFERENCES

10. P. M. FITZPATRICK, W. V. PETRYSHYN. Fixed Point theorems and the fixed point index for multivalued mappings in cones. J. L. Math. Soc. 12(1975)75–85

Submit your manuscripts at http://www.hindawi.com