ON MATRIX CONVEXITY OF THE MOORE-PENROSE INVERSE

B. MOND
Department of Mathematics
La Trobe University
Bundoora, Victoria, 3083, AUSTRALIA

J.E. PEČARIĆ
Faculty of Textil Technology
University of Zagreb
Zagreb, CROATIA

(Received December 12, 1994 and in revised form June 28, 1995)

ABSTRACT. Matrix convexity of the Moore-Penrose inverse was considered in the recent literature. Here we give some converse inequalities as well as further generalizations.

KEY WORDS AND PHRASES: Matrix convexity, generalized inverse

1. INTRODUCTION

Let A and B be two complex Hermitian positive definite matrices, and let $0 \leq \lambda \leq 1$. Then

$$[\lambda A + (1 - \lambda)B]^{-1} \leq \lambda A^{-1} + (1 - \lambda)B^{-1}$$

(1.1)

where $A \geq B$ means that $A - B$ is a positive semi-definite matrix.

This result, i.e., matrix convexity of the inverse function is an old result that appears explicitly in the papers [1,2,3,4,5] (see also the books [6, pp. 554-555] and [7, pp. 469-471]).

The related matrix convexity of the Moore-Penrose (generalized) inverse, denoted by A^+, was considered in paper [8,9,10]. The following was given in [10]:

Let A and B be two complex Hermitian positive semi-definite matrices of the same order. The inequality

$$[\lambda A + (1 - \lambda)B]^{+} \leq \lambda A^{+} + (1 - \lambda)B^{+}$$

(1.2)

for every $0 \leq \lambda \leq 1$ holds if and only if

$$R(A) = R(B)$$

(1.3)

where $R(A)$ is the range of A.

Two converses of (1.1) were obtained in [11]:

If A and B are complex Hermitian positive definite matrices and $0 \leq \lambda \leq 1$ is a real number, then

$$[\lambda A + (1 - \lambda)B]^{-1} \geq K(\lambda A^{-1} + (1 - \lambda)B^{-1})$$

(1.4)

and

$$[\lambda A + (1 - \lambda)B]^{-1} - (\lambda A^{-1} + (1 - \lambda)B^{-1}) \geq K A^{-1}$$

(1.5)

where

$$K = 4 \min \frac{\mu_i}{(1 + \mu_i)^2}, \quad \bar{K} = \min \frac{(\sqrt{\mu_i} - 1)^2}{-\mu_i},$$

(1.6a,b)

and the μ_i are the solutions of the equation

$$\det(B - \mu A) = 0.$$

(1.7)

In this note, we give analogous converses for (1.2), as well as some related results.

2. CONVERSES OF THE MATRIX CONVEXITY INEQUALITY OF THE MOORE-PENROSE INVERSE

Let A and B be two complex Hermitian positive semi-definite matrices of the same order such that (1.3) holds. Let P be a unitary matrix such that $A = P \text{diag}(A_1, 0)P^*$ where A_1 is a diagonal positive definite matrix. When (1.3) holds, we have $B = P \text{diag}(B_1, 0)P^*$ where B_1 is positive definite.
THEOREM 1. Let A and B be two complex Hermitian positive semi-definite matrices of the same order such that (1.3) holds and let $0 \leq \lambda \leq 1$ then
\[
[\lambda A + (1 - \lambda)B]^* \geq K(\lambda A^* + (1 - \lambda)B^*)
\]
where K is defined by (1.6a) and the μ_i are the positive solutions of the equation
\[
det(B_1 - \lambda A_1) = 0.
\]

THEOREM 2. Let A, B be defined as in Theorem 1. Then
\[
[\lambda A + (1 - \lambda)B]^* - (\lambda A^* + (1 - \lambda)B^*) \geq \bar{K}_1
\]
where \bar{K} is defined by (1.6b) and the μ_i are positive solutions of the equation (2.2)

PROOF. By (1.4) and (1.5) we have
\[
[\lambda A_1 + (1 - \lambda)B_1]^{-1} \geq K(\lambda A_1^{-1} + (1 - \lambda)B_1^{-1})
\]
and
\[
[\lambda A_1 + (1 - \lambda)B_1]^{-1} - (\lambda A_1^{-1} + (1 - \lambda)B_1^{-1}) \geq \bar{K}_1
\]
where K is defined by (1.6a), \bar{K} by (1.6b) and the μ_i are solutions of (2.2). Since $PA^*P^* = (PAP^*)^+$, (2.1) follows from (2.4) and (2.3) from (2.5).

3. SOME RELATED RESULTS

Let (Y, B, μ) be a probability space and $A_y, y \in Y$ a collection of positive semi-definite matrices of the same order. Let $A_y = (a_{ijy}), 1 \leq i, j \leq n$ and $y \in Y$. Assume that a_{ijy} as a function of y is measurable for every $1 \leq i, j \leq n$. The following results were proved in [9,10].

Suppose there exists a set $D \in B$ such that $\mu(D) = 1$ and $A_{y_1}A_{y_2} = A_{y_2}A_{y_1}$ for every $y_1, y_2 \in D$. Let $R(A_y)$ be the same for all $y \in D \in B$. Suppose A_y and A_y^+ as functions of y are integrable with respect to μ. Then
\[
\left[\int_Y A_y \mu(dy)\right]^+ \leq \int_Y A_y^+ \mu(dy).
\]

By $\int_Y A_y \mu(dy)$ we mean the matrix whose $(i, j)^{th}$ element is $\int_Y a_{ijy} \mu(dy)$.

THEOREM 3. If also all positive eigenvalues of A_y for all $y \in Y$ are in the interval $[m, M]$ where
\[
0 < m < M,
\]
then the following inequalities hold:
\[
\int_Y A_y^+ \mu(dy) \leq \frac{(M + m)^2}{4mm} \left[\int_Y A_y \mu(dy)\right]^+
\]
and
\[
\int_Y A_y^+ \mu(dy) - \left[\int_Y A_y \mu(dy)\right]^+ \leq \frac{\sqrt{M} - \sqrt{m}}{Mm} I.
\]

PROOF. As in [9], we have that there exists an orthogonal matrix C such that
\[
C^T A_y C = \text{diag}\{\lambda_{y_1}, \lambda_{y_2}, \ldots, \lambda_{ny}\}, \quad y \in Y
\]
where $\lambda_{y_1}, \lambda_{y_2}, \ldots, \lambda_{ny}$ are the eigenvalues of A_y. Since A_y is positive semi-definite, each $\lambda_{y} \geq 0$. Let k be the rank of A_y. We can assume without loss of generality that
\[
\lambda_{y_1}, \lambda_{y_2}, \ldots, \lambda_{ky} \neq 0 \quad \text{for every } y \in Y, \quad \text{and} \quad \lambda_{k+1,y} = \lambda_{k+2,y} = \ldots = \lambda_{ny} = 0 \quad \text{for every } y \in Y.
\]

Note that
\[
A_y^+ = C \text{diag}\left\{\frac{1}{\lambda_{y_1}}, \frac{1}{\lambda_{y_2}}, \ldots, \frac{1}{\lambda_{ky}}, 0, \ldots, 0\right\}C^T
\]
so that
Thus, we have
\[
K \left[\int_Y A_y \mu(dy) \right]^{-1} - \int_Y \lambda_y \mu(dy) = C \text{ diag} \left\{ K \left(\int_Y \lambda_y \mu(dy) \right)^{-1} - \int_Y \lambda_y \mu(dy), 0, \ldots, 0 \right\} C^T
\]
where \(K = (M + m)^2 / (4Mm) \). The inequality
\[
K \left[\int_Y \lambda_y \mu(dy) \right]^{-1} \int_Y \lambda_y \mu(dy)
\]
is the well-known Kantorovich inequality. Hence each diagonal element in the above diagonal matrix is nonnegative. This completes the proof of (3.2).

Similarly,
\[
\int_Y A_y \mu(dy) - \left[\int_Y A_y \mu(dy) \right]^{-1} - K I = C \text{ diag} \left\{ \int_Y \lambda_y^{-1} \mu(dy) - \left(\int_Y \lambda_y \mu(dy) \right)^{-1} - K, \ldots, \int Y \lambda_y \mu(dy) \right\} C^T
\]
where \(K = \left(\frac{\sqrt{M} - \sqrt{m}}{Mm} \right)^2 \). The inequality
\[
\int_Y \lambda_y^{-1} \mu(dy) - \int_Y \lambda_y \mu(dy)^{-1} \leq K
\]
is a simple consequence of the following Mond-Shisha inequality \[12\]
\[
\int f - \left(\int f^{-1} \right)^{-1} \leq \left(\sqrt{M} - \sqrt{m} \right)^2
\]
where \(m \leq f \leq M, 0 < m < M \). Namely
\[
\frac{1}{M} \leq f \leq \frac{1}{m}
\]
so that by substituting \(f \rightarrow \frac{1}{f} \), we get
\[
\int f^{-1} - \left(\int f \right)^{-1} \leq \frac{\left(\sqrt{M} - \sqrt{m} \right)^2}{Mm} = K.
\]
Thus each diagonal element in the above diagonal matrix is non-positive. This completes the proof.

Moreover, we can consider the powers of \(A \) and \(A^+ \). For simplicity of notation, if \(r < 0 \), we shall use \(A^{(r)} \) for \((A^+)^{-r} \). Note that \((A^+)^{-r} = (A^{-r})^+ \).

THEOREM 4. Let \(R(A_y) \) be the same for all \(y \in D \in B \). Suppose \(A_y^+ \) and \(A_y^{(r)}, (r < 0 < s) \) as functions of \(y \) are integrable with respect to \(\mu \) Then
\[
\left[\int_Y A_y^+ \mu(dy) \right]^s \geq \left[\int_Y A_y^+ \mu(dy) \right]^{(r)}
\]

PROOF. As in the proof of (3.2) and (3.3), we have
\[
\left[\int Y A_y^+ \mu(dy) \right]^s - \left[\int Y A_y^+ \mu(dy) \right]^{(r)} = C \text{ diag} \left\{ \left(\int Y \lambda_y^+ \mu(dy) \right)^s - \left(\int Y \lambda_y^+ \mu(dy) \right)^r, \ldots, \left(\int Y \lambda_y^+ \mu(dy) \right)^s - \left(\int Y \lambda_y^+ \mu(dy) \right)^r \right\} C^T.
\]
Each diagonal element in the above diagonal matrix is nonnegative. This follows from the fact that if \(f^s \) and \(f^r \) are positive and integrable, the well-known inequality for means of orders \(s \) and \(r \) states that

\[
\left(\int f^r \right)^{1/r} \leq \left(\int f^s \right)^{1/s} \quad (r < 0 < s)
\]

which is the same as

\[
\left(\int f^s \right)^{r} \leq \left(\int f^r \right)^{s}.
\]

Similar consequences of converse inequalities for (3.5) (see [12] and [13], respectively) are the next two theorems

Theorem 5. Let the conditions of Theorem 4 be satisfied and let all positive eigenvalues of \(A_y \) for all \(y \in Y \) belong to the interval \([m, M]\) \((0 < m < M)\). Then the following inequality holds

\[
\left[\int_Y A^s_y \mu(dy) \right]^{(r)} \geq \Delta \left[\int_Y A^{(r)}_y \mu(dy) \right]^s
\]

where

\[
\Delta = \left\{ \frac{r(\gamma^s - \gamma^r)}{(s-r)(\gamma^r - 1)} \right\}^s \left\{ \frac{s(\gamma^r - \gamma^s)}{(r-s)(\gamma^s - 1)} \right\}^{-s}, \quad \gamma = M/m.
\]

Theorem 6. Let the conditions of Theorem 5 be satisfied. Then

\[
\left[\int_Y A^s_y \mu(dy) \right]^{(r)} - \left[\int_Y A^{(r)}_y \mu(dy) \right]^{(r)} \leq \Lambda I
\]

where

\[
\Lambda = \max_{\theta \in [0, 1]} \{ [\theta M^r + (1 - \theta)m^r]^s - [\theta M^s + (1 - \theta)m^s]^r] \}.
\]

Of course (3.2) and (3.3) are the special cases \(r = -1, s = 1 \) of (3.6) and (3.8).

References

