ABSTRACT. In the present note, we define operator spaces with \(n \)-hyper-reflexive property, and prove \(n \)-hyper-reflexivity of some operator spaces.

KEY WORDS AND PHRASES. Operator algebras on Hilbert spaces, reflexivity, hyper-reflexivity

1992 AMS SUBJECT CLASSIFICATION CODES. 47D25

1. INTRODUCTION

Let \(H \) be a Hilbert space, and \(B(H) \) be the algebra of all bounded linear operators on \(H \). It is well known that \(B(H) \) is the dual space of the Banach space of trace class operators. If \(T \in B(H) \), \(R \subset B(H) \), and \(n \) is a positive integer, then \(H^{(n)} \) denotes the direct sum of \(n \) copies of \(H \), \(T^{(n)} \) denotes the direct sum of \(n \) copies of \(T \) acting on \(H^{(n)} \) and \(R^{(n)} = \{ T^{(n)} | T \in R \} \). Let \(P(H) \) be the set of all orthogonal projections in \(B(H) \). For any subspace \(R \subset B(H) \), we will denote by \(l(R) \) the collection of all maximal elements of the set

\[\{(Q, P) | (Q, P) \in P(H) \times P(H), QRT = 0\} \]

with respect to the natural order. It can be seen that if \(R \) is a unital subalgebra of \(B(H) \), then

\[l(R) = \{1 - P, P) | P \in \text{lat } R\} \]

where \(\text{lat } R \) is lattice of all invariant subspace of \(R \). Recall that an algebra \(R \subset B(H) \) is transitive if \(\text{lat } R \{0, 1\} \), and reflexive if the only operators that leave invariant all of the invariant subspaces of \(R \) are the operators belonging to \(R \). Generalizing this notion, we say that an operator space \(R \subset B(H) \) is transitive if \(l(R) = \{(0, 1), (1, 0)\} \) (this is equivalent to \(\overline{R}x = H \) for any \(x \in H - \{0\} \)), and is reflexive if

\[R = \{T \in B(H) | QTP = 0 \text{ for every } (Q, P) \in l(R)\} . \]

In other words, \(R \) is reflexive if the seminorms \(d(T, R) \) and \(\sup \{\|QTP\| | (Q, P) \in P(R)\} \) vanish on \(R \) simultaneously, where \(d(T, R) \) is the distance from \(T \) to \(R \). It can be seen that

\[d(T, R) \geq \sup \{\|QTP\| | (Q, P) \in l(R)\} \]

for any \(T \in B(H) \).

Reflexive operator space \(R \subset B(H) \) is called hyper-reflexive if there exists some constant \(C \geq 1 \) such that

\[d(T, R) \leq C \sup \{\|QTP\| | (Q, P) \in l(R)\} \]

for any \(T \in B(H) \), (see \([1-5]\))

In [4], an example of non hyper-reflexive operator algebras is constructed.
In the present note, we define operator spaces with n-hyper-reflexive property, and prove n-hyper-reflexivity of some operator spaces.

The operator space $R \subset B(H)$ is called n-reflexive if $R^{(n)}$ is reflexive. It can be shown that

$$d(T, R) \geq \sup \{\|QT^{(n)}P\| | (Q, P) \in l(R^{(n)})\}$$

for any $T \in B(H)$ and $n \in N$.

We say that the n-reflexive operator space $R \subset B(H)$ is n-hyper-reflexive if there exists some constant $C \geq 1$ such that

$$d(T, R) \leq C \sup \{\|QT^{(n)}P\| | (Q, P) \in l(R^{(n)})\}$$

for any $T \in B(H)$.

It is easily seen that if R is n-reflexive (n-hyper-reflexive) then it is k-reflexive (k-hyper-reflexive) for every $k > n$.

2. MAIN RESULT

Let us consider in $B(H)$ the following operator equation

$$\sum_{i=1}^{n} A_iXB_i = X.$$ (2.1)

The space of all solutions of the equation (2.1) will be denoted by R.

Proposition 1. R is $(n + 1)$-reflexive.

Proof. For given any $x, y \in H - \{0\}$, put

$$z = (B_1x, ..., B_nx, x) \in H^{(n+1)} \quad \text{and} \quad y = (A^*_1y, ..., A^*_ny, -y) \in H^{(n+1)}.$$

Let P_x and Q_y be the one-dimensional projections on one-dimensional subspaces $\{C_x\}$ and $\{C_y\}$ respectively. From (2.1), we have $(Q_y, P_x) \in l(R^{(n+1)})$. On the other hand, it is easy to see that any $T \in B(H)$ is a solution of equation (2.1) if and only if $Q_y T^{(n+1)} P_x = 0$. This completes the proof.

We will assume that, in case $n > 1$, the coefficients of equation (2.1) satisfy the following conditions

$$\|A_i\| \leq 1, \quad \|B_i\| \leq 1, \quad A_iA_j = B_iB_j = 0 \quad (1 \leq i < j \leq n). \quad (2.2)$$

The purpose of this note is to prove the following.

Theorem 2. The space R of all solutions of (2.1) and (2.2) is $(n + 1)$-hyper-reflexive.

To prove Theorem 2 we need some preliminary results.

Let Y be a Banach space with $Y^* = X$ and S be a weak* continuous linear operator on X with uniformly bounded degree, $\|S^n\| \leq C(n \in N)$. Denote by E the space of all fixed points of S, $E = \{x \in X | Sx = x\}$. If $x_0 \in E$, then for any $x \in X$ we have

$$\|S^n x - x\| = \|S^n(x - x_0) - (x - x_0)\| \leq (C + 1)\|x - x_0\|$$

and consequently

$$d(x, E) \geq \frac{1}{C + 1} \sup_n \|S^n x - x\|$$

Proposition 3. Under the above assumptions,

$$d(x, E) \leq \sup_n \|S^n x - x\|$$

for any $x \in X$.

Proof. Since E is a weak* closed subspace of X, there exists a subspace $M \subset Y$ such that $M^\perp = E$, where M^\perp is the annihilator of M. It can be seen that the set $\{Ty - y | y \in Y\}$ weak* generates M, where T is the preadjoint of S, that is, $T^* = S$. Let $x \in X$ and let $K(x)$ be the weak* closure of the convex hull of the set $\{S^n x | n \in N\}$. By Alaoglu's theorem, $K(x)$ is weak* compact. We will show that $K(x) \cap E \neq \emptyset$ for any $x \in X$. Suppose that $K(x) \cap E = \emptyset$. By Hahn-Banach separating theorem, there exists $y_0 \in M$ such that
ON HYPER-REFLEXIVITY OF SOME OPERATOR SPACES

\[\inf_{a \in K(x)} |\langle a, y_0 \rangle| = \sigma > 0 \]

where \(\langle , \rangle \) is the duality between \(X \) and \(Y \).

Put

\[x_n = \frac{1}{n} \sum_{k=1}^{n} S^k x. \]

Then \(x_n \in K(x) \) and \(\|x_n\| \leq C\|x\| \). Now, we will prove that

\[\lim_{n \to \infty} |\langle x_n, y_0 \rangle| = 0. \quad (23) \]

Since \((x_n) \) is a bounded set, it is sufficient to prove the equality \((23)\) in case \(y_0 = Ty - y, (y \in Y) \). In that case

\[\langle x_n, Ty - y \rangle = \langle Sx_n - x_n, y \rangle = \frac{1}{n} \langle S^{n+1} x - Sx, y \rangle \to 0. \]

Now, suppose that \(\|S^n x - x\| \leq \delta \) for some \(\delta > 0 \) and any \(n \in \mathbb{N} \). It is easy to see that \(\|a - x\| \leq \delta \) for any \(a \in K(x) \). Let \(a_0 \in K(x) \cap E \). Then \(\|a_0 - x\| \leq \delta \) and consequently \(d(x, E) \leq \delta \).

PROOF OF THEOREM 2. For any \(A \in B(H) \) we denote by \(L_A \) and \(R_A \) the left and right multiplication operators \(L_A : X \to AX, R_A : X \to XA \) on \(B(H) \) respectively. Then we may write equation \((21)\) as

\[\left(\sum_{i=1}^{n} L_A R_B \right) X = X. \]

Thus, the solution space \(R \) of \((21)\) coincide with the set of all fixed points of the operator

\[S = \sum_{i=1}^{n} L_A R_B. \]

It is easily seen that \(S \) is a weak* continuous linear operator on \(B(H) \). Moreover, under assumption \((22)\), it can be shown (by induction) that

\[S^k = \sum_{i=1}^{n} L_{A^i} R_{B^i}. \]

and consequently \(\|S^k\| \leq n \).

By Proposition 3, for any \(T \in B(H) \) we have

\[d(T, R) \leq \sup_k \|S^k(T) - T\| = \sup_k \left\| \sum_{i=1}^{n} A_i^k T B_i^k - T \right\| \]

\[= \sup_k \sup_{\|x\| \leq 1, \|y\| \leq 1} \left| \sum_{i=1}^{n} (TB_i^k x, A_i^k y) - (Tx, y) \right|. \]

For \(\|x\| \leq 1 \) and \(\|y\| \leq 1 \), let \(x_k = (B_1^k x, \ldots, B_n^k x, x), y_k = (A_1^k y, \ldots, A_n^k y, -y) \). It can be seen that

\[(R^{(n+1)} x_k, y_k) = 0 \quad \text{and} \quad \|x_k\|^2 \leq n + 1, \|y_k\|^2 \leq n + 1 (k \in \mathbb{N}). \]

Therefore

\[d(T, R) \leq (n + 1) \sup \left\{ \|T^{(n+1)} x, y\| \mid (R^{(n+1)} x, y) = 0, \|x\| = \|y\| = 1 \right\}. \]

Let \(P_x Q_y \) be the one-dimensional projections (as in the proof of Proposition 1). Then we obtain
This completes the proof

COROLLARY 4. Let $A, B \in B(H)$ with $\|A\| \leq 1, \|B\| \leq 1$ Then, the solution space R of the equation

$$AXB = X$$

is 2-hyper-reflexive with constant $C = 2$

Generally speaking, the solution space of equation (2.4) may be reflexive For example, if $Q, P \in P(H),$ then the solution space of equation

$$QXP = X$$

is reflexive Hyper-reflexivity (with constant $C = 1$) of the solution space of equation (2.5) was proved in [3]

Note that the space of all Toeplitz operators τ coincide with the solution space of (2.4) in case $A = U^*$ and $B = U,$ where U is a unilateral shift operator on Hardy space H^2 [6]

Consequently, τ is a 2-reflexive by Proposition 1 Using Theorem 2, we can deduce even more

COROLLARY 5. The space of all Toeplitz operators τ is 2-hyper-reflexive, with constant $C = 2$

In other words

$$d(T, \tau) \leq 2 \sup \left\{ \|QT^{(2)} P\| \left| (Q, P) \in l^2(\tau) \right. \right\}$$

for any $T \in B(H^2)$

On the other hand we have the following

PROPOSITION 6. The space of all Toeplitz operators τ is transitive (consequently τ is not reflexive)

PROOF. Suppose that τ is nontransitive Then there exists $f, g \in H^2 - \{0\}$ such that $(Tf, g) = 0$ for every $T \in \tau$ If we put in last equality $T = U^n$ and $T = U^{*n}$ $(n = 0, 1, 2, \ldots),$ then we obtain that the Fourier coefficients of the function f, g are zero Since $f, g = 0$ $a.e.$, one of these functions vanishes $a.e.$ on some subset of the unit circle with positive Lebesque measure By F and M Riesz uniqueness theorem [6], one of these functions is zero

Hyper-reflexivity of algebras of analytic Toeplitz operators was proved in [5]

REFERENCES

Submit your manuscripts at
http://www.hindawi.com