RESEARCH NOTES
NOTES ON \((\alpha, \beta)\)-DERIVATIONS

NEŞET AYDIN
Adnan Menderes University
Faculty of Arts and Sciences
Department of Mathematics
0910 Aydin, TURKEY

(Received December 18, 1995 and in revised form April 2, 1996)

ABSTRACT. Let \(R \) be a prime ring of characteristic not 2, \(U \) a nonzero ideal of \(R \) and \(0 \neq d \) a \((\alpha, \beta)\)-derivation of \(R \) where \(\alpha \) and \(\beta \) are automorphisms of \(R \). i) \([d(U), a] = 0\) then \(a \in Z \) ii) For \(a, b \in R \), the following conditions are equivalent (I) \(\alpha(a)d(x) = d(x)\beta(b) \), for all \(x \in U \) (II) Either \(\alpha(a) = \beta(b) \in C_R(d(U)) \) or \(C_R(a) = C_R(b) = R' \) and \(a[a, x] = [a, x]b \) (or \(a[b, x] = [b, x]b \)) for all \(x \in U \) Let \(R \) be a 2-torsion free semiprime ring and \(U \) be a nonzero ideal of \(R \) iii) Let \(d \) be a \((\alpha, \beta)\)-derivation of \(R \) and \(g \) be a \((\gamma, \delta)\)-derivation of \(R \). Suppose that \(d g \) is a \((\alpha \gamma, \beta \delta)\)-derivation and \(g \) commutes both \(\gamma \) and \(\delta \) then \(g(x)U = 0 \) for all \(x, y \in U \). iv) Let \(\text{Ann}(U) = 0 \) and \(d \) be an \((\alpha, \beta)\)-derivation of \(R \) and \(g \) be a \((\gamma, \delta)\)-derivation of \(R \) such that \(g \) commutes both \(\gamma \) and \(\delta \). If for all \(x, y \in U \), \(\beta^{-1}(d(x))Ug(y) = 0 = g(x)U\alpha^{-1}(d(y)) \) then \(dg \) is a \((\alpha \gamma, \beta \delta)\)-derivation on \(R \)

KEY WORDS AND PHRASES: Derivation, semiprime ring, prime ring, commutative

1991 AMS SUBJECT CLASSIFICATION CODES: 16A15, 16A70

1. INTRODUCTION

Let \(R \) be a ring and \(X \) be a subset of \(R \). Let \(\text{Ann}_r(X) = \{a \in R \mid xa = 0 \text{ all } x \in X\} \) and \(\text{Ann}_l(X) = \{a \in R \mid ax = 0 \text{ all } x \in X\} \) be the right and left annihilators, respectively, of the subset \(X \) of \(R \). If \(R \) is a semiprime ring then the left and right and two-sided annihilators of an ideal \(X \) coincide. It will be denoted by \(\text{Ann}(X) \). Let \(U \) be an ideal of \(R \). Note that if \(\sigma \) is an automorphism of \(R \) and \(\text{Ann}(U) = 0 \) then \(\text{Ann}(\sigma(U)) = 0 \). Let \(R \) be a ring and \(\alpha, \beta \) be two automorphisms of \(R \). An additive mapping \(d : R \to R \) is called an \((\alpha, \beta)\)-derivation if \(d(xy) = \alpha(x)d(y) + d(x)\beta(y) \) holds for all pairs \(x, y \in R \)

Throughout this note \(R \) will represent an associative ring. Let \(R' = \{x \in R \mid d(x) = 0\} \). The centralizer of a subset \(A \) of \(R \) is \(C_R(A) = \{y \in R \mid ay = ya, \forall a \in A\} \). \(C_R(R) = Z \), the center of \(R \)

There are two motivations for this research. Herstein [1] has proved that if \(\sigma \) is an automorphism of \(R \) with \(\text{Ann}(U) = 0 \), then any element \(a \in R \) satisfying \(ad(x) = d(x)a \) for all \(x \in R \), should be central. In [2], Daif has proved the following theorem. Let \(R \) be a prime ring and \(a, b \in R \). Then the following conditions are equivalent

\(i) \ ad(x) = d(x)b \), \(\forall x \in R \)

\(ii) \) Either \(a = b \in C_R(d(R)) \) or \(C_R(a) = C_R(b) = R' \) and \(a[a, x] = [a, x]b \) (or \(a[b, x] = [b, x]b \)) for all \(x \in R \). In the first part of this note we generalized these two theorems for an ideal \(U \) and \((\alpha, \beta)\)-derivation of \(R \).
In the second part, Bresar and Vukman [3] give some results concerning two derivations in semiprime rings. We will generalize some of these results by taking an ideal of R instead of R and extend to more general mappings. As a result of this, we will give a generalization of a well-known result of Posner which states that if R is a prime ring of characteristic not 2 and d, g are nonzero derivation of R then dg cannot be a derivation.

2. RESULTS

LEMMA 1. Let R be a prime ring of characteristics not 2, $(0) \neq U$ an ideal of R, $0 \neq d : R \rightarrow R$ a (α, β)-derivation such that $\alpha d = d \alpha, d \beta = \beta d$ and $\alpha \in R$. If $\alpha \in C_R(d(U))$ then $\alpha \in Z$.

PROOF. Since $\alpha \in C_R(d(U))$, $d(x) = d(x)a$ for all $x \in U$. Replacing x by xy, $y \in U$, we obtain $\alpha \alpha(x)d(y) + d(x)\beta(y) = \alpha(x)d(y)a + d(x)\beta(y)a$. Using hypothesis we have

$$d(x)\alpha(\beta(y)) = \alpha(x), \alpha \beta(y).$$

Taking $yr, r \in R$, instead of y, we obtain

$$d(x)\beta(y)[\alpha, \beta(y)] = \alpha(x), \alpha \beta(y)d(r) \text{ for all } x, y \in U, r \in R.$$ If we replace r by $\beta^{-1}(d(z)), z \in U$, we get $d(x)\beta(y)[\alpha, d(z)] = \alpha(x), \alpha \beta(y)\beta^{-1}(d(z)).$ Since $\alpha \in C_R(d(U))$ we have $\alpha(x), \alpha \beta(y)^{-1}(d^2(z)) = 0$ for all $x, y, z \in U$. Since $\alpha(U)$ is an ideal of R and R is prime we get $\alpha \in Z$ or $d^2(U) = 0$. If $d(U) = 0$, then $d^2(xy) = \alpha^2(x)d^2(y) + 2d(x)\beta(y)\beta(y)$ and so $d(x \beta(y)) = 0$. By [4, Lemma 3] we have a contradiction. Thus $\alpha \in Z$.

THEOREM 1. Let R be a prime ring of characteristic not 2, $(0) \neq U$ an ideal of R and $a, b \in R$. Then the following conditions are equivalent

1. $a(a)d(x) = d(x)a(a)$, for all $x \in U$.
2. Either $\beta(b) = \alpha(a) \in C_R(d(U))$ or $C_R(a) = C_R(b) = R'$ and $\alpha[a, x] = [a, x]b$ (or $[b, c] = [b, x]b$) for all $x \in U$.

PROOF. (I) \Rightarrow (II) If $\alpha \in C_R(d(U))$ then by Lemma 1 we get $\alpha \in Z$. (I) gives $d(x)\beta(b) - \alpha(a)) = 0$, for all $x \in U$. By [4, Lemma 3] it implies that $\beta(b) = \alpha(a)$. Similarly, if $\beta(b) \in C_R(d(U))$ then $\beta(b) = \alpha(a)$.

We assume henceforth that neither $\alpha(a)$ nor $\beta(b)$ in $C_R(d(U))$. Let in (I) x be rz, where $r \in R$, and using (I), we have $\alpha(a(\alpha(r))d(x) + \alpha(a)d(r)\beta(x) = \alpha(r)d(x)\beta(b) + d(r)\beta(x)\beta(b)$ and so

$$\alpha([a, r])d(x) = d(r)\alpha(b(x)) - \alpha(a)d(r)\beta(x).$$

(2.1)

Taking y instead of r where $y \in U$, in (2.1) and using (I) we obtain

$$\alpha([a, y])d(x) = d(y)\beta([x, b]), \text{ for all } x, y \in U.$$ (2.2)

Now if $d(x) = 0$ then (2.2) gives us $d(y)\beta([x, b]) = 0$ for all $y \in U$. By [4, Lemma 3], we get $x \in C_R(b)$. Conversely, if $x \in C_R(b)$, then (2.2) gives us $\alpha([y, x])d(x) = 0$. Since by [4, Lemma 3] $a \notin Z$, we have $d(x) = 0$. Therefore $C_R(b) = R'$. Similarly, we can show that $C_R(a) = R'$.

In particular, $d(a) = d(b) = 0$ and $ab = ba$.

Replace r by $yb, y \in U$, in (2.1) we have $\alpha([a, y])\alpha(b)\beta(x) = d(y)\beta(b)(xb) - \alpha(a)d(y)\beta(x) = \alpha(a)d(y)\beta(bx) = \alpha(a)d(y)\beta(x) - \alpha(a)d(y)\beta(x) = \alpha(a)d(y)\beta([x, b])$ and using (2.2) we get $\alpha([a, y])\alpha(b)d(x) = \alpha(a)\alpha([a, y])d(x)$ and so

$$\alpha([a, y])b - \alpha([a, y])d(x) = 0 \text{ for all } x, y \in U.$$ By [4, Lemma 3] we obtain

$$a[a, y] = [a, y]b \text{ for all } y \in U.$$
Furthermore, replacing x by ax in (2.2) and using (2.2) and hypothesis we also have $a[b, x] = [b, x]b$

(II) \Rightarrow (I) If $\alpha(a) = \beta(b) \in C_R(d(U))$ it is obviously $\alpha(a)d(x) = d(x)\beta(b)$ for all $x \in U$. Therefore it suffices to show that if $C_R(a) = C_R(b) = R'$ and $a[a, x] = [a, x]b$ for all $x \in U$ then $\alpha(a)d(x) = d(x)\beta(b)$ for all $x \in U$.

Since $d(a) = d(b) = 0$, $ab = ba$, $[a, ax - xb] = a[a, x] - [a, x]b = 0$ It gives $ax - xb \in R'$ and so $0 = d(ax - xb) = \alpha(a)d(x) - d(x)\beta(b)$. This proves the theorem.

For the second part we begin with

Lemma 2 [3, Lemma 1]. Let R be a 2-torsion free semiprime ring and a, b the elements of R. Then the following conditions are equivalent:

(i) $axb = 0$ for all $x \in R$
(ii) $bxa = 0$ for all $x \in R$
(iii) $axb + bxa = 0$ for all $x \in R$

If one of these conditions is fulfilled then $ab = ba = 0$ too.

Lemma 3. Let R be a semiprime ring and U a nonzero ideal of R such that $Ann(U) = 0$. Let d be an (α, β)-derivation of R and g be a (γ, δ)-derivation of R. If $d(U)Ug(U) = 0$ then $d(R)Ug(R) = 0$.

Proof. For all $x, y, z \in U$, $d(x)yg(z) = 0$. Replace x by xs, $s \in R$ we have $0 = d(xs)yg(z) = \alpha(x)d(s)yg(z) + d(x)\beta(s)yg(z)$. Since $\beta(s)y \in U$, the last equation implies that $\alpha(x)d(s)yg(z) = 0$, for all $x, y, z \in U$ and $s \in R$. Taking tz instead of z, where $t \in R$, we have $0 = \alpha(x)d(s)yg(t)\beta(z) + d(x)\beta(s)yg(t)\delta(z)$. Since $\gamma(t) \in U$, it gives $\alpha(x)d(s)yg(t)\delta(z) = 0$ for all $x, y, z \in U$ and $s, t \in R$. Therefore $d(s)yg(t)\delta(z) \in Ann(\alpha(U)) = 0$. Thus we get $d(s)yg(t)\delta(z) = d(s)yg(t)\delta(z)\gamma(t)g(z) = 0$. As a result of this, it implies that $d(R)Ug(R) = 0$.

Lemma 4. Let R be a semiprime ring and U be a nonzero ideal of R such that $Ann(U) = 0$. Let $a, b \in R$ be such that $aUb = 0$ then $aRb = 0$.

Proof. For all $x \in U$, $0 = axb$. Replace x by $tbxrat$, where $t, r \in r$ we have $atb = atb = 0$. Since R is semiprime ring, this implies that $atbU = 0$ for all $t \in R$. Thus $atb \in Ann(U) = 0$ we get $aRb = 0$.

Theorem 2. Let R be a 2-torsion free semiprime ring and U be a nonzero ideal of R with $Ann(U) = 0$. Let d be a (α, β)-derivation of R and g be a (γ, δ)-derivation of R. Suppose that dg is a $(\alpha_\gamma, \beta_\delta)$-derivation and g commutes both γ and δ. Then $g(x)Ug^{-1}(y) = 0$, for all $x, y \in U$.

Proof. Since g commutes both γ and δ, from the first par to the proof of [5, Lemma 1] there is no loss of generality in assuming $\beta = 1$ and $\delta = 1$. For all $x, y, z \in U$, $dg(xy) = d(\gamma(x)g(y) + g(x)y) = \alpha_\gamma(x)dg(y) + d(\gamma(x))g(y) + \alpha(g(x))d(y) + dg(x)y$. On the other hand, since dg is an $(\alpha_\gamma, 1)$-derivation we have $dg(xy) = \gamma(x)dg(y) + dg(x)y$. Comparing the two expressions so obtained for $dg(xy)$, we see that

$$d(\gamma(x))g(y) + \alpha(g(x))d(y) = 0 \quad \text{for all} \quad x, y \in U. \quad (2.3)$$

Replacing y by yz where $z \in R$ in (2.3) we obtain $0 = d(\gamma(x))g(yz) + \alpha(g(x))d(yz) = d(\gamma(x))\gamma(y)g(z) + d(\gamma(x))g(y)z + \alpha(g(x))\alpha(y)d(z) + \alpha(g(x))d(y)z = [d(\gamma(x))g(y) + \alpha(g(x))d(y)]z + d(\gamma(x))\gamma(y)g(z) + \alpha(g(x))\alpha(y)d(z)$. This relation reduces to

$$d(\gamma(x))\gamma(y)g(z) + \alpha(g(x))\alpha(y)d(z) = 0 \quad \text{for all} \quad x, y, z \in U, z \in R. \quad (2.4)$$

Replace y by $yg(t)$, $t \in U$ and take $z \in U$ we have $d(\gamma(x))\gamma(y)g(t)g(z) + \alpha(g(x))\alpha(y)d(g(t))d(z) = 0$. Considering this relation (2.4) and (2.3) we obtain $d(\gamma(x))\gamma(y)g(t)g(z) = -\alpha(g(x))\alpha(y)d(g(t))g(z) = \alpha(g(x))\alpha(y)d(g(t))d(z)$ for all $x, y, z \in U$. Comparing the last two relations we get

$$2\alpha(g(x))\alpha(y)\alpha(g(t))d(z) = 0. \quad \text{Since} \quad R \quad \text{is} \quad 2\text{-torsion free, it gives}$$
Replacing \(t \) by \(tu, u \in U \) it follows
\[
g(x)yg(t)\alpha^{-1}d(z) = 0 \quad \text{for all } x, y, z, t \in U.
\]
Since \(g(t) \in U \) this relation reduces to
\[
g(x)\alpha^{-1}(d(z)) = 0 \quad \text{for all } x, t, u, z \in U.
\]
By Lemma 4 we have for all \(x, t, u, z \in U, g(x)Rg(t)\alpha^{-1}(d(z)) = 0 \).
In particular \(g(x)\alpha^{-1}(d(z))Rg(x)\alpha^{-1}(d(z)) = 0 \) for all \(x, u, z \in U \).
Since \(R \) is semiprime we obtain \(g(x)\alpha^{-1}(d(z)) = 0 \) for all \(z, z \in U \).

Corollary. Let \(R \) be a prime ring of characteristic not 2, \(d \) be an \((\alpha, \beta) \)-derivation of \(R \) and \(g \) be a \((\gamma, \delta) \)-derivation of \(R \) such that \(g \) commutes both \(\gamma \) and \(\delta \). If the composition \(dg \) is a \((\alpha\gamma, \beta\delta) \)-derivation then \(d = 0 \) or \(g = 0 \).

Theorem 3. Let \(R \) be a 2-torsion free semiprime ring and \(U \) be a nonzero ideal of \(R \) such that \(\text{Ann}(U) = 0 \). Let \(d \) be a \((\alpha, \beta) \)-derivation of \(R \) and \(g \) be a \((\gamma, \delta) \)-derivation of \(R \) such that \(g \) commutes both \(\gamma \) and \(\delta \). If for all \(x, y \in U, \) \(\beta^{-1}(d(x))Ug(y) = 0 = g(x)\alpha^{-1}(d(y)) \) then \(dg \) is a \((\alpha\gamma, \beta\delta) \)-derivation on \(R \).

Proof. If \(x, y, z \in R \) \(\beta^{-1}(d(x))yg(z) = 0 \) \(g(x)\alpha^{-1}(d(z)) = 0 \) for all \(x, y, z \in R \) and since \(g \) commutes both \(\gamma \) and \(\delta \), \(\beta^{-1}(d(x))yg(z) = 0 \) for all \(x, y, z \in R \). Since \(R \) is a semiprime ring, by Lemma 2 we obtain \(d(\gamma(x))\beta(g(z)) = 0 \) for all \(x, z \in R \). Similarly from \(g(x)\alpha^{-1}(d(y)) = 0 \), we get \(\alpha(g(x))d(\delta(y)) = 0 \) Therefore \(dg \) is an \((\alpha\gamma, \beta\delta) \)-derivation on \(R \).

References

