ON A CONJECTURE OF VUKMAN

QING DENG
Department of Mathematics
Southwest China Normal University
Chongqing 630715, P.R. CHINA

(Received October 27, 1993 and in revised form October 30, 1995)

ABSTRACT. Let R be a ring. A bi-additive symmetric mapping \(d : R \times R \to R \) is called a symmetric bi-derivation if, for any fixed \(y \in R \), the mapping \(x \to D(x, y) \) is a derivation. The purpose of this paper is to prove the following conjecture of Vukman:

Let \(R \) be a noncommutative prime ring with suitable characteristic restrictions, and let \(D : R \times R \to R \) and \(f(z) = D(z, z) \) be a symmetric bi-derivation and its trace, respectively. Suppose that \(f(x) \in Z(R) \) for all \(x \in R \), where \(f_{k+1}(x) = [f_k(x), x] \) for \(k \geq 1 \) and \(f_1(x) = f(x) \), then \(D = 0 \).

KEY WORDS AND PHRASES: Prime ring, centralizing mapping, symmetric bi-derivation.

1991 AMS SUBJECT CLASSIFICATION CODES: Primary 16W25; Secondary 16N60

1. INTRODUCTION

Throughout this paper, \(R \) will denote an associative ring with center \(Z(R) \). We write \([x, y]\) for \(xy - yx \), and \(I_a \) for the inner derivation deduced by a \(a \). A mapping \(D : R \times R \to R \) will be called symmetric if \(D(x, y) \) holds for all pairs \(x, y \in R \). A symmetric mapping is called a symmetric bi-derivation, if \(D(x + y, z) = D(x, z) + D(y, z) \) and \(D(xy, z) = D(x, z)y + xD(y, z) \) are fulfilled for all \(x, y \in R \). The mapping \(f : R \to R \) defined by \(f(x) = D(x, x) \) is called the trace of the symmetric bi-derivation \(D \), and obviously, \(f(x + y) = f(x) + f(y) + 2D(x, y) \). The concept of a symmetric bi-derivation was introduced by Gy Maksa in [1,2]. Some recent results concerning symmetric bi-derivations of prime rings can be found in Vukman [3,4]. In [4], Vukman proved that there are no nonzero symmetric bi-derivations \(D \) in a noncommutative prime ring \(R \) of characteristic not two and three, such that \([[D(x, x), x], x] \in Z(R) \). The following conjecture was raised: Let \(R \) be a noncommutative prime ring of characteristic different from two and three, and let \(D : R \times R \to R \) be a symmetric bi-derivation. Suppose that for some integer \(n \geq 1 \), we have \(f_n(x) \in Z(R) \) for all \(x \in R \), where \(f_{k+1}(x) = [f_k(x), x] \) for \(k = 1, 2, \ldots, \) and \(f_1(x) = D(x, x) \). Then \(D = 0 \).

The purpose of this paper is to prove this conjecture under suitable characteristic restrictions.

2. THE RESULTS

THEOREM 1. Let \(R \) be a prime ring of characteristic different from two. Suppose that \(R \) admits a nonzero symmetric bi-derivation. Then \(R \) contains no zero divisors.

PROOF. It is sufficient to show that, \(a^2 = 0 \) for \(a \in R \) implies \(a = 0 \). We need three steps to establish this.

LEMMA A. If \(D(a, *) \neq 0 \), then \(D(a, *) = \mu I_a \), where \(\mu \in C \), the extended centroid of \(R \).

PROOF. Since \(D(a^2, x) = D(0, x) = 0 \), we have
Replacing x by xy, we obtain

$$I_a(x)D(a,y) = D(a,x)I_a(y)$$

for all $x \in R$.

and replacing y by yz, we get

$$I_a(x)yD(a,z) = D(a,x)yI_a(z)$$

(2.1)

Since $D(a,*) \neq 0$, we may suppose that $D(a,z) \neq 0$ for a fixed $z \in R$. Obviously $I_a(z) \neq 0$. By (2.1), and by [5, Lemma 1.3.2], there exist $\mu(x)$ and $\nu(x)$ in C, either $\mu(x)$ or $\nu(x)$ being not zero, such that $\mu(x)I_a(x) + \nu(x)D(a,x) = 0$. If $\nu(x) \neq 0$ then $D(a,x) = \frac{\mu(x)}{\nu(x)} I_a(x)$; on the other hand, if $\nu(x) = 0$ then $\mu(x)I_a(x) = 0$ and $I_a(x) = 0$, using (2.1) and $I_a(z) \neq 0$, so $D(a,x) = 0$. In any event, we have $D(a,x) = \mu(x)I_a(x)$

Hence (2.1) implies $(\mu(x) - \mu(z))I_a(z) = 0$. It follows that either $I_a(z) = 0$ or $\mu(x) = \mu(z)$. By (2.1), the former implies $D(a,x) = 0$ and $D(a,x) = \mu(z)I_a(x)$.

In both cases, we get $D(a,x) = \mu(z)I_a(x)$ for all $x \in R$, and $\neq \mu(z)$ being fixed.

The fixed element μ in Lemma A is somewhat dependent on a, we write it as μ_a. For any given $r \in R$, ara satisfies our original hypotheses on a; therefore for each $r \in R$, either $D(ara,*) = 0$ or $D(ara,*) = \mu_aI_{ara}$, where $\mu_{ara} \neq 0$.

LEMMA B. If $D(ara,*) \neq 0$, then $\mu_{ara} = \mu_a$.

PROOF. $D(ara,*) \neq 0$ implies $ara \neq 0$. Suppose that $D(a,*) = 0$, then $D(ara,x) = D(a,x)ra + aD(r,x)a = \mu_aI_{ara},$ but $D(ara,x) = \mu_{ara}I_{ara}(x) = \mu_a(ara - ara)$, so that $\mu_{ara}(ara - ara) = D(r,x)a.$ Right-multiplying the last equation by a, we have $\mu_{ara}ara = 0$ for all $x \in R$. It follows that $ara = 0$, a contradiction. Therefore $D(a,*) = \mu_aI_a$, and consequently,

$$D(ara,x) = \mu_aI_a(x)ra + aD(r,x)a + ar\mu_a(x);$$

and right-multiplying this equation by a yields

$$D(ara,x)a = \mu_aara$$

for all $x \in R$.

Hence $\mu_{ara}ara = \mu_aara$, immediately $\mu_{ara} = \mu_a$.

LEMMA C. If $a^2 = 0$, then $a = 0$.

PROOF. Let $S = \{r \in R | D(ara,*) = \mu_aI_{ara}, \mu_{ara} \neq 0\}$ and $T = \{r \in R \setminus D(ara,*) = 0\}$.

By Lemma A and B, $R = S \cup T$ and S and T are additive subgroups of R. We conclude that either $S = R$ or $T = R$.

Suppose that $S = R$. Lemma A gives, either $D(a,*) = 0$ or $D(a,*) = \mu_aI_a$. If $D(a,*) = 0$, then $D(ara,x) = D(r,x)a$, for all $r,x \in R$, and $D(ara,x)a = 0$. It follows that $\mu_{ara} = 0$. Since $\mu_a = \mu_{ara} \neq 0$, we have $a = 0$. If $D(a,*) = \mu_aI_a$, then the equation

$$D(ara, ya) = D(a, ya)ra + aD(r,y)a + arD(a,y)a$$

gives $\mu_{ara}ya = 2\mu_aayara + \mu_{ara}ya$. Hence we get $ayara = 0$, and $a = 0$ again.

We suppose henceforth that $T = R$. If $D(a,*) = 0$, then $D(aza,yz) = aD(aza,yz) = 0$, and $ayD(za,z) = 0$. Thus $D(za,z) = D(z)za = 0$. Since $D \neq 0$, we then get $a = 0$. If $D(a,*) = \mu_aI_a$, then, right-multiplying the equation $D(aza,y) = 0$ by a, we obtain $\mu_aaza = azD(a,y)a = 0$, and $a = 0$ again. The proof of the theorem is complete.

In order to prove Vukman’s conjecture, we need the following proposition.

PROPOSITION. Let n be a positive integer; let R be a prime ring with char $R = 0$ or char $R > n$; and let g be a derivation of R and f the trace of a symmetric bi-derivation D. For $i = 1, 2, ..., n$, let $F_i(X,Y,Z)$ be a generalized polynomial such that $F_i(kx, f(kz), g(kz)) = k^iF_i(x, f(x), g(x))$ for all $x \in R$ for $k = 1, 2, ..., n$. Let $a \in R$, and (a) the additive subgroup generated by a. If all $x \in (a)$,
\[F_n(x, f(x), g(x)) + F_{n-1}(x, f(x), g(x)) + \ldots + F(x, f(x), g(x)) \in Z(R), \]
(2.2)

then \(F_i(a, f(a), g(a)) \in Z(R) \) for \(i = 1, 2, \ldots, n \).

This proposition can be proved by replacing \(x \) by \(a, 2a, \ldots, na \) in (2.2) and applying a standard "Van der Monde argument".

Theorem 2. Let \(n \) be a fixed positive integer and \(R \) be a prime ring with \(\text{char } R = 0 \) or \(\text{char } R > n + 2 \). Let \(f_{k+1}(x) = [f_k(x), x] \) for \(k > 1 \), and \(f_1(x) = f(x) \) the trace of a symmetric bi-derivation \(D \) of \(R \). If \(f_n(x) \in Z(R) \) for all \(x \in R \), then either \(D = 0 \) or \(R \) is commutative.

Proof. Linearizing \(f_n(x) \in Z(R) \), we obtain

\[\ldots ([f(x), y] + f(x), x, x + y], x + y] \in Z(R); \]

and using the Proposition, we get

\[\ldots ([f(x), y], x, \ldots, x + y], x + y] + 2\ldots ([D(x, y), x], x, \ldots, x] \in Z(R), \]
equivalently,

\[
(-1)^{n-2}I_{x}^{n-2}([f_1(x), y]) + (-1)^{n-3}I_{x}^{n-3}([f_2(x), y]) + \ldots + [f_{n-1}(x), y] + 2(-1)^{n-1}I_{x}^{n-1}(D(x, y)) \in Z(R). \quad (2.3)
\]

Noting that

\[
(-1)^{-n-2}I_{x}^{n-2}([f_1(x), x^2]) = (-1)^{-n}([f_2(x), x^2]) = \ldots = [f_{n-1}(x), x^2] = (-1)^{-n-1}I_{x}^{n-1}(D(x, x^2)) = 2f_n(x)x,
\]

and replacing \(y \) by \(x^2 \) in (2.3), we then get \(2(n + 1)f_n(x)x \in Z(R) \). Since \(f_n(x) \in Z(R) \), it follows that \(f_n(x) = 0 \).

The linearization of \(f_n(x) \) gives

\[
(-1)^{n-2}I_{x}^{n-1}([f_1(x), y]) + (-1)^{n-3}I_{x}^{n-3}([f_2(x), y]) + \ldots + [f_{n-1}(x), y] + 2(-1)^{n-1}I_{x}^{n-1}(D(x, y)) = 0. \quad (2.4)
\]

Since \(I_{x}^{n-k}([f_{k-1}(x), xy]) = xI_{x}^{n-1}([f_{k-1}(x), y]) + I_{x}^{n-k}([f_k(x), y]) \) for \(k = 2, 3, \ldots, n \), and \(I_{x}^{n-1}(D(x, xy)) = xI_{x}^{n-1}(D(x, y)) + I_{x}^{n-1}([f_1(x), y]) \). Substituting \(xy \) for \(y \) in (2.4), we have

\[
(-1)^{n-2}I_{x}^{n-2}(f_2(x)y) + (-1)^{n-3}I_{x}^{n-3}(f_3(x)y) + \ldots + (-1)^{n-1}I_{x}^{n-1}(f_1(x)y) = 0.
\]

Taking \(y = f_{n-2}(x) \), applying \(I_{x}^{n}((ab) = k \sum_{j=0}^{k} \binom{k}{j} I_{x}^{k-j}(a)I_{x}^{j}(b) \) and noting \(I_{x}^{n}(f(x)) = 0 \) for \(i \) and \(j \), we then conclude that

\[
2(-1)^{n-1} \left(\binom{n-1}{1} \right) I_{x}^{n-2}(f_1(x)I_{x}(f_{n-2}(x))) + (-1)^{n-2} \left(\binom{n-2}{1} \right) I_{x}^{n-3}(f_2(x))I_{x}(f_{n-2}(x)) + \ldots + (-1)^{n-1}f_{n-1}(x)I_{x}(f_{n-2}(x)) = 0.
\]

But \((-1)^{k}I_{x}^{k-1}(f_{n-k}(x))I_{x}(f_{n-2}(x)) = (f_{n-1}(x))^2 \), so \((n + 2)(n - 1)(f_{n-1}(x))^2 = 0 \), and by the hypotheses on the characteristic, we get \((f_{n-1}(x))^2 = 0 \). Suppose that \(D \neq 0 \). By Theorem 1, \(f_{n-1}(x) = 0 \), and by induction, \(f_2(x) = [f(x), x] = 0 \). Using Vukman [3, Theorem 1], \(R \) is commutative, we complete the proof of Theorem 2.

Theorem 3. Let \(n > 1 \) be an integer and \(R \) be a prime ring with \(\text{char } R = 0 \) or \(\text{char } R > n + 1 \), and let \(f(x) \) be the trace of a symmetric bi-derivation \(D \) of \(R \). Suppose that \([x^2, f(x)] \in Z(R) \) for all \(x \in R \). In this case either \(D = 0 \) or \(R \) is commutative.
PROOF. Using the condition \([x^n, f(x)] \in Z(R)\), we get \([x^{2n}, f(x^2)] \in Z(R)\), and
\[
[x^{2n}, f(x)]x^2 + x^2[x^{2n}, f(x)] + 2x[x^{2n}, f(x)]x \in Z(R).
\]
(2.5)

Noting that \([x^{2n}, f(x)] = 2[x^n, f(x)]x^n\), we now have from (2.5) that \(8[x^n, f(x)]x^{n+2} \in Z(R)\). Thus either \([x^n, f(x)] = 0 \text{ or } x^{n+2} \in Z(R)\).

But linearizing \([x^n, f(x)] \in Z(R)\) and applying the Proposition gives
\[
[x^{n-1}y + x^{n-2}yx + ... + yx^{n-1}, f(x)] + 2[x^n, D(x, y)] \in Z(R)
\]
for all \(x, y \in R\), and taking \(y = x^3\), yields
\[
n[x^{n+2}, f(x)] + 6[x^n, f(x)]x^2 \in Z(R).
\]

Suppose that \([x^n, f(x)] \neq 0\), then \(x^{n+2} \in Z(R)\) and \([x^n, f(x)]x^2 \in Z(R)\), hence \(x^2 \in Z(R)\). Now this condition, together with \(x^{n+2} \in Z(R)\), implies either \(x^2 = 0\) or \(x^n \in Z(R)\), so that in each event, \([x^n, f(x)] = 0\).

Linearizing \([x^n, f(x)] = 0\) and using the Proposition, we have
\[
[x^{n-1}y + x^{n-2}yx + ... + yx^{n-1}, f(x)] + 2[x^n, D(x, y)] = 0
\]
Replacing \(y\) by \(x^2\) yields \(n[x^{n+1}, f(x)] = 0\), hence \([x, f(x)]x^n = 0\). If \(D \neq 0\), then by Theorem 1, \([x, f(x)] = 0\), and by Vukman [3, Theorem 1], \(R\) is commutative. This completes the proof.

ACKNOWLEDGMENT. I am indebted to Prof. M. N. Daif for his help. I would also like to thank the referee for his valuable suggestions.

REFERENCES

