SUBRINGS OF I-RINGS AND S-RINGS

MAMADOU SANGHARE
Département de Mathématiques et Informatiques
Faculté des Sciences et Techniques
UCAD
DAKAR (SENEGAL)
e-mail sanghare@ucad.sn

(Received May 6, 1993 and in revised form February 13, 1997)

ABSTRACT. Let R be a non-commutative associative ring with unity $1 \neq 0$, a left R-module is said to satisfy property (I) (resp. (S)) if every injective (resp. surjective) endomorphism of M is an automorphism of M. It is well known that every Artinian (resp. Noetherian) module satisfies property (I) (resp. (S)) and that the converse is not true. A ring R is called a left I-ring (resp. S-ring) if every left R-module with property (I) (resp (S)) is Artinian (resp. Noetherian). It is known that a subring B of a left I-ring (resp. S-ring) R is not in general a left I-ring (resp. S-ring) even if R is a finitely generated B-module, for example the ring $M_3(K)$ of 3×3 matrices over a field K is a left I-ring (resp S-ring), whereas its subring

$$B = \left\{ \begin{bmatrix} \alpha & 0 & 0 \\ \beta & \alpha & 0 \\ \gamma & 0 & \alpha \end{bmatrix} / \alpha, \beta, \gamma \in K \right\}$$

which is a commutative ring with a non-principal Jacobson radical

$$J = K. \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + K. \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

is not an I-ring (resp. S-ring) (see [4], theorem 8). We recall that commutative I-rings (resp S-rings) are characterized as those whose modules are a direct sum of cyclic modules, these rings are exactly commutative, Artinian, principal ideal rings (see [1]). Some classes of non-commutative I-rings and S-rings have been studied in [2] and [3]. A ring R is of finite representation type if it is left and right Artinian and has (up to isomorphism) only a finite number of finitely generated indecomposable left modules. In the case of commutative rings or finite-dimensional algebras over an algebraically closed field, the classes of left I-rings, left S-rings and rings of finite representation type are identical (see [1] and [4]). A ring R is said to be a ring with polynomial identity (P. I-ring) if there exists a polynomial $f(X_1, X_2, \ldots, X_n)$, $n \geq 2$, in the non-commuting indeterminates X_1, X_2, \ldots, X_n over the center Z of R such that one of the monomials of f of highest total degree has coefficient 1, and $f(a_1, a_2, \ldots, a_n) = 0$ for all a_1, a_2, \ldots, a_n in R. Throughout this paper all rings considered are associative rings with unity, and by a module M over a ring R we always understand a unitary left R-module. We use M_R to emphasize that M is a unitary right R-module.

KEY WORDS AND PHRASES: Left I-ring, left S-ring, ring with polynomial identity, ring of finite representation type.

1991 AMS SUBJECT CLASSIFICATION CODES: 16D70, 16P10, 16L60.
1. THE MAIN RESULT

THEOREM. Let \(R \) be a left I-ring (resp. S-ring), and \(B \) be a sub-ring of \(R \) contained in the center \(Z \) of \(R \). Suppose that \(R \) is a finitely generated flat \(B \)-module. Then \(B \) is an I-ring (resp. S-ring).

To prove this theorem we need some results.

It is easy to see that

LEMMA 1. Every homomorphic image of a left I-ring (resp. S-ring) is a left I-ring (resp. S-ring).

LEMMA 2. Let \(P_1 \) and \(P_2 \) be two prime ideals of a ring \(R \). If \(P_1 \) is not contained in \(P_2 \) then \(\text{Hom}_R(R/P_1, R/P_2) \neq \{0\} \).

PROOF. Let \(f : R/P_1 \to R/P_2 \) be an \(R \)-homomorphism, and set \(f(1 + P_1) = t + P_2 \), where \(t \in R \). Let \(x \in P_1 \setminus P_2 \), and let \(r \) be any element in \(R \). We have \(P_2 = f(xr + P_1) = xrt + P_2 \). Thus \(xrt \in P_2 \). Since \(P_2 \) is prime, we have \(t \notin P_2 \), and hence \(f = 0 \).

LEMMA 3. Let \(R \) be a prime ring with polynomial identity. If \(R \) is a left I-ring (resp. S-ring), then \(R \) is simple Artinian.

PROOF. Let \(R' \) be the total ring of fractions of \(R \) \([5]\). It is known that \(R' \) is simple Artinian \([5]\), so the \(R \)-module \(R' \) satisfies (I) (resp. (S)). Since \(R \) is a left I-ring (resp. S-ring), then \(R' \) is an Artinian (resp. Noetherian) \(R \)-module and hence \(R' = R \).

LEMMA 4. Let \(R \) be a semi-prime ring with polynomial identity. If \(R \) is a left I-ring (resp. S-ring), then \(R \) is semi-simple Artinian.

PROOF. Let \((P_t)_{t \in L} \) be a family pairwise distinct minimal prime ideals of \(R \) such that \[t \in L \]

Then it follows from Lemma 3 that the rings \(R/P_t(\ell \in L) \) are simple Artinian, so the left \(R \)-modules \(R/P_t(\ell \in L) \) satisfy (I) (resp. (S)). Following Lemma 1, \(\text{Hom}_R(R/P_t, R/P_{t'}) = \{0\} \) for \(\ell \neq t' \), so the left \(R \)-module \(M = \oplus_{t \in L} R/P_t \) satisfies (I) (resp. (S)). Since \(R \) is a left I-ring (resp. S-ring), then \(M \) is Artinian. But \(R \) regarded as left \(R \)-module is isomorphic to a submodule of the semi-simple Artinian left \(R \)-module \(M \), hence \(R \) is semi-simple Artinian.

PROPOSITION 5. Let \(R \) be a ring with polynomial identity. If \(R \) is a left S-ring (resp. I-ring), then \(R \) is left Artinian.

PROOF. Suppose that \(R \) is a left S-ring (resp. I-ring) then the quotient ring \(R/\text{rad}(R) \), where \(\text{rad}(R) \) is the prime radical of \(R \), is a left S-ring (resp. I-ring), so, following Lemma 4, the ring \(R/\text{rad}(R) \) is semi-simple Artinian. This fact implies that \(R \) is semi-perfect and hence \(\text{rad}(R) = J(R) \), where \(J(R) \) is the Jacobson radical of \(R \). Let \(e \) be a primitive idempotent of \(R \). Since the endomorphism ring of the \(R \)-module \(Re \) is isomorphic to the local ring \(eRe \) with a nil Jacobson radical \(eJ(R)e \), then the \(R \)-module \(Re \) satisfies property (I) (resp. (S)). It follows that the \(R \)-module \(Re \) is Noetherian (resp. Artinian). Since \(R \) regarded as \(R \)-module is a direct sum of finitely many left \(R \)-modules of the form \(Re \), where \(e \) is a primitive idempotent of \(R \), then \(R \) is Noetherian. Let \(P \) now be a prime ideal of \(R \). Since the prime ring \(R/P \) is simple in virtue of Lemma 3, then \(R \) is left Artinian.

PROOF OF THE MAIN THEOREM. Since \(R \) is a finitely generated \(Z \)-module, then \(R \) is a ring with polynomial identity (see \([6]\)). So by Proposition 5 \(R \) is a left Artinian ring. Thus by \([7]\) the ring \(B \) is Artinian. Let \(e_1, \ldots, e_n \) be primitive idempotents of \(B \) such that \(B = \oplus_{i=1}^n e_iBe_i \). For every \(i, 1 \leq i \leq n \), \(B_i = e_iBe_i \) is a local Artinian ring. To show that \(B \) is a left I-ring (resp. S-ring) it is enough to show that for every \(i, 1 \leq i \leq n \), \(B_i \) is a left I-ring (resp. S-ring). We have \(A = \oplus_{i=1}^n A_i \), where \(A_i = e_iBe_i, 1 \leq i \leq n \). By hypothesis the left \(B \)-module \(\oplus_{i=1}^n A_i = A \) is flat and finitely generated, so the \(B \)-module \[A_i = e_iBe_i \cong e_iBe_i \oplus B = A \oplus_{i=1}^n e_iBe_i = A \oplus_{i=1}^n B_i, \]
is also flat and finitely generated. Since B_i is an Artinian local ring then the B_i-module A_i is faithfully flat (see [8] proposition 1, p. 44).

Suppose now that B_i is not an I-ring (resp. S-ring) for some $i, 1 \leq i \leq n$. Then by Proposition 2 of [2], there exists a B_i-module M of infinite length such that, for every integer $n \geq 1$, the B_i-module M^n satisfies both properties (I) and (S). Following [8] (corollary 2, p. 107), the B_i-module A_i is a free module. Let $M' = M \otimes_{B_i} A_i$. Since the B_i-module M is of infinite length and A_i is a faithfully flat B_i-module, then M' is an A_i-module of infinite length. On the other hand, since A_i is a free B_i-module, there exists an integer $s \geq 1$ such that $A_i = B_i^s$. We have then the B_i-module isomorphism

$$M' = M \otimes_{B_i} A_i = M \otimes_{B_i} B_i^s \cong M^s.$$

Hence the B_i-module $M' \cong M^s$ satisfies both properties (I) and (S) and therefore M', regarded as A_i-module, satisfies properties (I) and (S). This fact implies that the homomorphic image A_i of the left I-ring (resp. S-ring) A is not a left I-ring (resp. S-ring), in contradiction with Lemma 1.

COROLLARY. Let R be a left I-ring (resp. S-ring). If R is a finitely generated flat module over its center Z, then Z is an I-ring (resp. S-ring).

The following example shows that the converse of the theorem above is not true. Let K be a field. The commutative ring $A = K[X,Y]/(X^2, XY, Y^2)$ is not an I-ring (resp. S-ring) because its Jacobson radical $J = KX + KY$ is not principal (see [1], theorem 8). On the other hand K is an I-ring (resp. S-ring) and A is a finite-dimensional K-vector space.

ACKNOWLEDGEMENT. The author would like to thank the referee for his valuable suggestions and numerous very useful remarks about the text.

REFERENCES

