ORDERED COMPACTIFICATIONS AND FAMILIES OF MAPS

D. M. LIU and D. C. KENT
Department of Pure and Applied Mathematics
Washington State University
Pullman, WA 99163-3113, U.S.A.

(Received April 28, 1995 and in revised form June 2, 1995)

ABSTRACT. For a $T_{3.5}$-ordered space, certain families of maps are designated as “defining families.” For each such defining family we construct the smallest T_2-ordered compactification such that each member of the family can be extended to the compactification space. Each defining family also generates a quasi-uniformity on the space whose bicompletion produces the same T_2-ordered compactification.

KEY WORDS AND PHRASES. $T_{3.5}$-ordered space, T_2-ordered compactification, defining family of maps, quasi-uniform space, bicompletion.

1991 AMS SUBJECT CLASSIFICATION CODES: 54 F 05, 54 D 35

INTRODUCTION.

Let X be a $T_{3.5}$-ordered space, and let $CI^*(X)$ be the set of all increasing, continuous maps from X into $[0, 1]$. A subset Φ of $CI^*(X)$ which induces both the weak order and weak topology on X is called a defining family for X. For each such defining family Φ, we construct the smallest T_2-ordered compactification K_Φ with the property that each member of Φ can be extended to K_Φ. If Φ_1 and Φ_2 are two defining families for X such that $\Phi_1 \subseteq \Phi_2$, then $K_{\Phi_1} \leq K_{\Phi_2}$. For each defining family Φ, there is a largest defining family $\hat{\Phi}$ such that $K_\Phi = K_{\hat{\Phi}}$. Those defining families which are $\hat{\Phi}$ for some defining family Φ are called maximal defining families, and if Φ and Ψ are two maximal defining families, $K_\Phi \leq K_\Psi$ iff $\Phi = \Psi$. The largest defining family for X is $CI^*(X)$, and if $\Phi = CI^*(X)$ then K_Φ is the Nachbin (or Stone-Čech ordered) compactification [2].

Each defining family Φ also generates a quasi-uniformity ν_ϕ on X (related to the “usual” quasi-uniformity ν_0 on $[0, 1]$) which is T_0 and totally bounded. The bicompletion of (X, ν_ϕ) (as defined in [1]) yields a uniform ordered space which, in turn, gives the compactification K_ϕ. The maximal defining family $\hat{\Phi}$ is precisely the set of all quasi-uniformly continuous maps from (X, ν_ϕ) into $([0, 1], \nu_0)$.

1. PRELIMINARIES.

If X is a set, we denote by $F(X)$ the set of all (proper) filters on X and by $UF(X)$ the set of all ultrafilters on X. A non-empty collection \mathcal{G} of subsets of X is called a grill on X if: (1) $\emptyset \notin \mathcal{G}$; (2) $A \in \mathcal{G}$ and $A \subseteq B$ implies $B \in \mathcal{G}$; (3) $A \cup B \in \mathcal{G}$ implies $A \in \mathcal{G}$ or $B \in \mathcal{G}$. With every $\mathcal{F} \in F(X)$, we associate the grill $\gamma(\mathcal{F}) = \{A \subseteq X : X \setminus A \notin \mathcal{F}\}$; equivalently, $\gamma(\mathcal{F})$ is the union of all ultrafilters finer than \mathcal{F}.

Let (X, \leq) be a poset; a subset $A \subseteq X$ is increasing (respectively, decreasing) if $x \in A$ and $x \leq y$ (respectively, $y \leq x$) implies $y \in A$. If (X, \leq) and (Y, \leq^*) are posets, then a mapping $f :
(X, ≤) → (Y, ≤*) is increasing (respectively, decreasing) if x ≤ y implies f(x) ≤* f(y) (respectively, f(y) ≤* f(x)).

An ordered space (X, τ, ≤) consists of a poset (X, ≤) and a topology τ on (X, ≤) which is convex (meaning that the collection of all τ-open sets which are either increasing or decreasing is a subbase for τ). Usually an ordered space (X, τ, ≤) will simply be denoted by X. The closed unit interval [0, 1] with its usual order and topology is designated by I. For any ordered space X, let CI*(X) (respectively, CD*(X)) be the set of all continuous increasing (respectively, decreasing) maps from X into I. More generally, for ordered spaces X and Y, CI(X, Y) represents the set of all continuous, increasing functions from X into Y.

An ordered space X is said to be T2-ordered if the order "≤" is closed in X × X. A T2-ordered space X which has both the weak order (see Condition W0 below) and weak topology induced by CI*(X) is said to be T3.s-ordered (or completely regular ordered in the terminology of [2]). Some well-known characterizations of T3.s-ordered spaces are summarized in the following proposition.

PROPOSITION 1.1 The following statements about an ordered space X are equivalent.

1. X is T3.s-ordered.
2. X is a subspace of a compact, T2-ordered space.
3. X satisfies the following conditions:
 (i) If x ∈ X, A is a closed subset of X, and x ∈ A, then there is f ∈ CI*(X) and g ∈ CD*(X) such that f(x) = g(x) = 0 and f(y) ∨ g(y) = 1, for all y ∈ A;
 (ii) If x ∈ y in X, there is f ∈ CI*(X) such that f(y) = 0 and f(x) = 1.
4. The order and topology for X are induced by some quasi-uniformity W on X (i.e., ∩W is the order for X and the topology of X is the uniform topology of the uniformity W ∪ W−1).

Every T3.s-ordered space X has a largest T2-ordered compactification βX called the Nachbin compactification, which can be constructed by embedding X in the "ordered cube" ICI*(X), with the product order and topology.

Let X be an ordered space. If F is any subset of CI*(X) such that X has the weak order and the weak topology determined by F, then F is called a defining family for X. More precisely, F ⊆ CI*(X) is a defining family if the following conditions are satisfied:

(We) For any F ∈ UF(X), F → x in X iff f(F) → f(x) in I, for all f ∈ F.
(We) For any (x, y) ∈ X × X, x ≤ y in X iff f(x) ≤ f(y) in I, for all f ∈ F.

Some rather obvious remarks about defining families are summarized in the next proposition.

PROPOSITION 1.2 Let X be an ordered space.

1. X is T3.s-ordered iff X allows at least one defining family. In particular, CI*(X) is a defining family for every T3.s-ordered space.
2. If F1 ⊆ F2 ⊆ CI*(X) and F1 is a defining family for X, then F2 is also a defining family for X.

2. THE COMPACTIFICATION KΦ.

Let X be a T3.s-ordered space. If F ∈ UF(X) and f ∈ CI*(X), there is a unique point aF,f in I such that f(F) → aF,f. For any a ∈ I, let V(a) denote the neighborhood filter at a. If F is a defining family for X and F ∈ UF(X), we define the filter FΦ = ∨{f−1(V(aF,f)) : f ∈ F}. Note that if F → x in X, then aF,f = f(x) for all f ∈ F, and in this case FΦ is simply the neighborhood filter at x.

Continuing with the assumptions of the preceding paragraph, let XΦ = {γ(FΦ) : F ∈ UF(X)} be the set of grills associated with the filters FΦ. If γ ∈ XΦ and F, G ∈ UF(X) are such that F ⊆ γ and G ⊆ γ, then aF,f = aG,f, for all f ∈ F. It therefore follows that, for each f ∈ F, the function
ORDERED COMPACTIFICATIONS AND FAMILIES OF MAPS

107

\(f_\Phi : X_\Phi \to I, \) defined by \(f_\Phi(\gamma) = a_{\mathcal{F}_\Phi}, \) where \(\mathcal{F} \) any ultrafilter that is a subset of \(\gamma, \) is well-defined. If \(i_\Phi : X \to X_\Phi \) is defined by \(i_\Phi(x) = \gamma(x_\Phi), \) where \(x_\Phi, \) is the fixed ultrafilter generated by \{\{x\}\}, then clearly \(i_\Phi \) is an injection and the diagram below commutes for every \(f \in \Phi. \)

\[
\begin{array}{c}
X_\Phi \\
\downarrow \phi \\
I
\end{array}
\quad
\begin{array}{c}
X \\
\downarrow f
\end{array}
\]

Let \(X_\Phi \) be equipped with the weak order and weak topology induced by \(\{f_\Phi : f \in \Phi\}. \) Then \(i_\Phi \) is an ordered space embedding (i.e., \(i_\Phi \) is topological embedding, and \(x \leq y \Leftrightarrow i_\Phi(x) \leq i_\Phi(y), \) where \(\leq_\Phi \) denotes the order of \(X_\Phi). \)

THEOREM 2.1 Let \(X \) be a \(T_{3.5}\)-ordered space and \(\Phi \) a defining family for \(X. \) Then \((X_\Phi, i_\Phi) \) is a \(T_2\)-ordered compactification of \(X, \) and each \(f \in \Phi \) has a unique, continuous, increasing extension to \(X_\Phi \) such that the diagram below commutes.

\[
\begin{array}{c}
X_\Phi \\
\downarrow \phi \\
I
\end{array}
\quad
\begin{array}{c}
X \\
\downarrow f
\end{array}
\]

PROOF. The family \(\Phi^\gamma = \{f_\Phi : f \in \Phi\} \) separates points in \(X_\Phi, \) and therefore \(X_\Phi \) is \(T_{3.5}\)-ordered; in particular, \(X_\Phi \) is \(T_2\)-ordered. In view of the paragraph preceding the theorem, it remains only to show that \(X_\Phi \) is compact and \(i_\Phi(X) \) is dense in \(X_\Phi. \)

Let \(A \in \text{UF}(X). \) For each \(\gamma \in X_\Phi, \) choose an ultrafilter \(\mathcal{F}, \) such that \(\mathcal{F} \subseteq \gamma; \) in particular, if \(\gamma = \gamma(\mathcal{F}_\Phi) \) where \(\mathcal{F} \to x \) in \(X, \) define \(\mathcal{F}_\gamma = \hat{x}. \) If \(B \subseteq X, \) let \(B^* = \{\gamma \in X_\Phi : B \in \mathcal{F}_\gamma\}. \) Then, define \(\mathcal{F}_A = \{A \subseteq X : A^* \subseteq A\}; \) one easily verifies that \(\mathcal{F}_A \) is an ultrafilter. We shall show that \(A \to \gamma(\mathcal{F}_A) \) in \(X_\Phi. \) For this purpose, it suffices to show that \(f_\Phi(A) \to f_\Phi(\gamma(\mathcal{F}_A)) = a_{\mathcal{F}_A,f}. \) for all \(f \in \Phi. \) Given \(f \in \Phi, \) let \(U \) be a closed neighborhood of \(a_{\mathcal{F}_A,f} \) in \(I. \) We first observe that \(f(\mathcal{F}_A) \to a_{\mathcal{F}_A,f}, \) and hence \(f^{-1}(U) \in \mathcal{F}_A, \) which implies \((f^{-1}(U))^* \subseteq A. \) Then note that \(f(\mathcal{F}_A) \to a_{\mathcal{F}_A,f}; \) consequently \(f^{-1}(U) \subseteq A, \) and \(f_\Phi(A) \to a_{\mathcal{F}_A,f}. \) Thus \(X_\Phi \) is compact.

Finally, let \(\gamma \in X_\Phi \) and, for \(B \subseteq X, \) let \(B^* \) be defined as in the preceding paragraph. If \(\mathcal{F} \in \text{UF}(X) \) and \(\mathcal{F} \subseteq \gamma, \) let \(\mathcal{F}^* \) be the filter on \(X_\Phi \) generated by \(\{F^* : F \in \mathcal{F}\}. \) One easily shows that \(\mathcal{F}^* \to \gamma \) in \(X_\Phi. \) Since \(i_\Phi(F) \geq \mathcal{F}^*, \) it follows that \(i_\Phi(X) \) is dense in \(X_\Phi. \)

The compactification \((X_\Phi, i_\Phi) \) of \(X \) determined by a defining family \(\Phi \) will be denoted by \(K_\Phi. \)

By the preceding theorem, each \(f \in \Phi \) has a unique extension \(f_\Phi \in CI^*(X_\Phi). \) If \(Y \) is any compact, \(T_2\)-ordered space, we define \(CI_\Phi(X,Y) = \{f \in CI(X,Y) : h \circ f \in \Phi, \text{ for all } h \in CI^*(Y)\}. \) The next theorem establishes that each \(f \in CI_\Phi(X,Y) \) can be “lifted” relative to \(K_\Phi. \)

THEOREM 2.2 Let \(X \) be a \(T_{3.5}\)-ordered space, \(\Phi \) a defining family for \(X, \) and \(Y \) a compact, \(T_2\)-ordered space. If \(g \in CI_\Phi(X,Y), \) then there is a unique \(g_\Phi \in CI(X_\Phi,Y) \) such that the diagram below commutes.

\[
\begin{array}{c}
X_\Phi \\
\downarrow \phi \\
Y
\end{array}
\quad
\begin{array}{c}
X \\
\downarrow g
\end{array}
\]

PROOF. Let \(g \in CI_\Phi(X,Y), \) and \(\gamma \in X_\Phi; \) assume \(\mathcal{F} \) is an ultrafilter and \(\mathcal{F} \subseteq \gamma. \) Define \(g_\Phi : X_\Phi \to Y \) as following: \(g_\Phi(\gamma) = y_{x,g}, \) where \(y_{x,g} \) is the unique limit of \(g(\mathcal{F}) \) in \(Y. \) Using the facts that \(g \in CI_\Phi(X,Y) \) and \(CI^*(Y) \) separates points in \(Y, \) we see that \(g_\Phi(\gamma) \) is independent of the ultrafilter \(\mathcal{F} \) which represents \(\gamma, \) so \(g_\Phi \) is well defined.
If \(h \in CI'(Y) \), let \(h' = h \circ g \). Then we observe that the preceding definition of \(g_* \) makes the following diagram commute:

\[
\begin{array}{ccc}
X & \xrightarrow{h} & Y \\
\downarrow{g} & \nearrow{h'} & \\
X & \xrightarrow{g_*} & Y
\end{array}
\]

If \(\gamma \leq \delta \) in \(X_\Phi \), then \(h'_\Phi(\gamma) \leq h'_\Phi(\delta), \forall h \in CI'(Y) \), which implies \(h(\gamma) \leq h(\delta) \) holds for all \(h \in CI'(Y) \). Since \(Y \) has the weak order induced by \(CI'(Y) \), \(g_*(\gamma) \leq g_*(\delta) \). Thus \(g_* \) is increasing. A similar argument, based on \(Y \) having the weak topology induced by \(CI'(Y) \), shows that \(g_* \) is continuous. The uniqueness of \(g_* \) is obvious because all spaces involved are Hausdorff. \(\blacksquare \)

We omit the simple proof of the next proposition.

PROPOSITION 2.3 If \(\Phi \) is a defining family for a \(T_{3.5} \)-ordered space \(X \), then \(\Phi' = \{ f_\Phi : f \in CI'(X) \} \) is a defining family for \(X_\Phi \).

Starting with a \(T_{3.5} \)-ordered space \(X \) and a defining family for \(X \), it follows that \(\Phi' \) and \(CI'(X_\Phi) \) are both defining families for \(X_\Phi \), and it is clear that \(\Phi' \subseteq CI'(X_\Phi) \). Let \(\hat{\Phi} = \{ f \in CI'(X) : \text{there is } g \in CI'(X_\Phi) \text{ such that } f = g \circ i_\Phi \} \); in other words, \(\hat{\Phi} \) consists of all members of \(CI'(X) \) which have a continuous, increasing extension in \(CI'(X_\Phi) \). Clearly \(\hat{\Phi} \subseteq \hat{\Phi} \), and so \(\hat{\Phi} \) is a defining family for \(X \). Note that \((\hat{\Phi})' = CI'(X_\Phi) \), and since \((\hat{\Phi})' \) is, by Proposition 2.3, a defining family for \(X_\Phi \), it follows that \(X_\Phi = X_\Phi \). These observations yield the following result.

PROPOSITION 2.4 If \(\Phi \) is a defining family for a \(T_{3.5} \)-ordered space \(X \), then \(\hat{\Phi} = \{ f \in CI'(X) : \text{there is } g \in CI'(X_\Phi) \text{ such that } f = g \circ i_\Phi \} \) is the largest defining family for \(X \) such that \(K_\Phi = K_{\hat{\Phi}} \).

THEOREM 2.5 Let \(\Phi, \Psi \) be defining families for a \(T_{3.5} \)-ordered space.

(a) If \(\Phi \subseteq \Psi \), then \(K_\Phi \subseteq K_\Psi \).

(b) \(K_\Phi \leq K_\Psi \) iff \(\hat{\Phi} \subseteq \hat{\Psi} \).

PROOF. (a) \(\Phi \subseteq \Psi \) implies \(\hat{\Phi} \subseteq \hat{\Psi} \). Considering the diagram

\[
\begin{array}{ccc}
X & \xrightarrow{i_\Phi} & X_\Phi \\
\downarrow{(i_\Phi)_\Psi} & & \downarrow{(i_\Phi)_\Phi} \\
X & \xrightarrow{i_\Phi} & X_\Phi
\end{array}
\]

and applying Theorem 2.2, we see that \((i_\Phi)_\Psi \) is increasing and continuous. Thus \(K_\Phi = K_{(i_\Phi)_\Phi} \leq K_{(i_\Phi)_\Psi} = K_\Psi \).

(b) If \(K_\Phi \leq K_\Psi \), then there is an increasing, continuous map \(\sigma \) making the diagram

\[
\begin{array}{ccc}
X & \xrightarrow{i_\Phi} & X_\Psi \\
\downarrow{i_\Phi} & \nearrow{\sigma} & \\
X & \xrightarrow{i_\Phi} & X_\Phi
\end{array}
\]

commute. Each member of \(\hat{\Phi} \) has the form \(f \circ i_\Phi \) for some \(f \in CI'(X_\Phi) \). But \(f \circ i_\Phi = f \circ \sigma \circ i_\Phi \) is also in \(\hat{\Psi} \). Thus \(\hat{\Phi} \subseteq \hat{\Psi} \). The converse follows from (a). \(\blacksquare \)

If \(X \) is a \(T_{3.5} \)-ordered space, let \(DF(X) \) be the poset of all defining families, ordered by inclusion. Two defining families \(\Phi \) and \(\Psi \) in \(DF(X) \) are equivalent if \(K_\Phi = K_\Psi \) (i.e., if \(K_\Phi \) and \(K_\Psi \) are equivalent compactifications of \(X \) in the usual sense). Thus \(DF(X) \) is partitioned into equivalent
classes, and each equivalent class \((\Phi)\) contains a largest member \(\hat{\Phi}\) which we call a maximal defining family.

COROLLARY 2.6 Let \(X\) be a \(T_{3.5}\)-ordered space, \(K = (X', \phi)\) a \(T_2\)-ordered compactification of \(X\), and \(\Phi \in DF(X)\) such that each \(f \in \Phi\) has an extension \(f' \in Cl'(X')\). Then \(K_\Phi \leq K\).

COROLLARY 2.7 For a \(T_{3.5}\)-ordered space, the correspondence \(\Phi \mapsto K_\Phi\) is bijective and order-preserving between the maximal defining families for \(X\) and the \(T_2\)-ordered compactifications of \(X\).

3. DEFINING FAMILIES AND QUASI-UNIFORMITIES.

This concluding section is based on the results of Fletcher and Lindgren [1], and to some extent we borrow their notation.

Let \((X, \mathcal{V})\) be a quasi-uniform space; the associated uniformity \(\mathcal{V} \vee \mathcal{V}^{-1}\) will be denoted by \(\mathcal{V}'\).

Recall that \((X, \mathcal{V})\) is \(T_0\) iff \(\mathcal{V}\) is a partial order (or, equivalently, \((X, \mathcal{V}')\) is \(T_2\)), and totally bounded iff, for each \(U \in \mathcal{V}\), there is a finite cover \(\{A_1, \cdots, A_n\}\) of \(X\) such that \(A_i \times A_j \subseteq U\), for \(i = 1, \cdots, n\). Note that \(\mathcal{V}\) is totally bounded iff \(\mathcal{V}'\) is totally bounded.

Every \(T_0\), quasi-uniform space \((X, \mathcal{V})\) induces a uniform ordered space \((X, \mathcal{U}, \leq)\), where \(\mathcal{U} = \mathcal{V}'\) and \(\leq = \cap \mathcal{V}\); also associated with \((X, \mathcal{V})\) is the \(T_{3.5}\)-ordered space \((X, \tau, \leq)\), where \(\tau = eq\) and \(\leq\) is again \(\cap \mathcal{V}\). Furthermore, for every compact, \(T_2\)-ordered space \((X, \tau, \leq)\), there is a unique quasi-uniformity \(\mathcal{V}\) on \(X\) such that \(\tau = eq\) and \(\leq = \cap \mathcal{V}\) (Theorem 4.21, [1]). In particular, for the compact, \(T_2\)-ordered space \(I\), the unique compatible quasi-uniformity, denoted here by \(\mathcal{W}\), has a base of sets of the form \(W_\epsilon = \{(x, y) \in I \times I : |x - y| \leq \epsilon\}\), where \(\epsilon > 0\).

For a quasi-uniform space \((X, \mathcal{V})\), let \(QUC(X, \mathcal{V})\) be the set of all quasi-uniformly continuous maps from \((X, \mathcal{V})\) into \((I, \mathcal{W})\). If \(X = (X, \tau, \leq)\) is the \(T_{3.5}\)-ordered space associated with \((X, \mathcal{V})\), it is clear that \(QUC(X, \mathcal{V}) \subseteq Cl'(X)\). It is shown in Theorems 3.29 and 3.33 of [1] that every \(T_0\), quasi-uniform space \((X, \mathcal{V})\) has a bicompletion \(((X, \mathcal{V}), j)\) such that \(((\hat{X}, \hat{\mathcal{V}}), j)\) is the unique uniform space completion of \((X, \mathcal{V}')\), and each \(f \in QUC(X, \mathcal{V})\) has a unique extension in \(QUC(\hat{X}, \hat{\mathcal{V}})\). These observations lead to the following proposition.

PROPOSITION 3.1 Let \((X, \mathcal{V})\) be a \(T_0\), totally bounded quasi-uniform space with associated \(T_{3.5}\)-ordered space \((X, \tau, \leq)\), and let \(((\hat{X}, \hat{\mathcal{V}}), j)\) be the bicompletion of \((X, \mathcal{V})\). If \(((\hat{X}, \hat{\mathcal{V}}), j)\) is the \(T_{3.5}\)-ordered space associated with \((X, \mathcal{V})\), then \(\hat{K} = ((\hat{X}, \hat{\mathcal{V}}), j)\) is a \(T_2\)-ordered compactification of \((X, \tau, \leq)\).

THEOREM 3.2 Let \(X\) be a \(T_{3.5}\)-ordered space and \(\Phi \in DF(X)\). Let \(\mathcal{V}_\Phi\) be the weak uniformity on \(X\) induced by \(\Phi\) relative to \((I, \mathcal{W})\). Let \(((\hat{X}_\Phi, \hat{\mathcal{V}}_\Phi), j)\) be the bicompletion of \((X, \mathcal{V}_\Phi)\), and \(\hat{K}_\Phi = ((\hat{X}_\Phi, \hat{\mathcal{V}}_\Phi), j)\) be the \(T_2\)-ordered compactification of \(X\) induced by the bicompletion. Then \(\hat{K}_\Phi = K_\Phi\).

PROOF. Let \(\mathcal{V}\) be the unique, \(T_0\) totally bounded quasi-uniformity on \(X_\Phi\), whose associated \(T_{3.5}\)-ordered space is the compactification \(((X_\Phi, \tau_\Phi, \leq_\Phi), i_\Phi)\) derived from \(\Phi\). The latter space has the weak order and topology induced by \(\Phi'\) (see Proposition 2.3) relative to \(I\), and hence \(\mathcal{V}\) is the weak quasi-uniformity on \(X_\Phi\) induced by \(\Phi'\) relative to \((I, \mathcal{W})\). If \(U = (i_\Phi)^{-1}(\mathcal{V})\) is the restriction of \(\mathcal{V}\) to \(X\), then \(U\) is the weak quasi-uniformity on \(X\) induced by \(\Phi\) relative to \((I, \mathcal{W})\). In other words, \(U = \mathcal{V}_\Phi\). Since the \(T_2\)-ordered compactification associated with a \(T_0\), totally bounded quasi-uniformity is unique (up to equivalence), \(\hat{K}_\Phi = K_\Phi\).

COROLLARY 3.3 Let \(X\) be a \(T_{3.5}\)-ordered space and \(\Phi \in DF(X)\). Then \(\hat{\Phi} = QUC(X, \mathcal{V}_\Phi)\).

PROOF. By Theorem 3.29, [1], each \(f \in QUC(X, \mathcal{V}_\Phi)\) can be extended to the compactification \(\hat{K}_\Phi = K_\Phi\); thus \(QUC(X, \mathcal{V}_\Phi) \subseteq \hat{\Phi}\). Conversely, each \(f \in \hat{\Phi}\) has a unique, increasing, continuous extension to \(K_\Phi = \hat{K}_\Phi\), and this extension of \(f\) is quasi-uniformly continuous from \((\hat{X}_\Phi, \hat{\mathcal{V}}_\Phi)\) into
(I, W). Thus $f \in QUC(X, \mathcal{V}_\Phi)$. \hfill \Box

COROLLARY 3.4 Let (X, \mathcal{V}) be a T_0, totally bounded quasi-uniform space with associated compact, T_2-ordered space $X = (X, \tau, \leq)$. Then $\Phi = QUC(X, \mathcal{V})$ is a maximal defining family for X and $\mathcal{V} = \mathcal{V}_\Phi$.

COROLLARY 3.5 Let X be a $T_{3.5}$-ordered space. Then $\mathcal{V} \mapsto QUC(X, \mathcal{V})$ is bijective and order-preserving between the T_0, totally bounded quasi-uniformities which induce X and the maximal defining families for X.

REFERENCES

Submit your manuscripts at http://www.hindawi.com