ON RADIiS OF STARLIKENESS AND CONVEXITY
FOR CONVOLUTIONS OF STARLIKE FUNCTIONS

YI LING* and SHUSEN DING**

* Department of Mathematics, Harbin Institute of Technology, Harbin, P .R. China.
** Department of Mathematics, The Florida State University, Tallahassee, FL 32306-3027.

(Received May 5, 1995 and in revised form October 10, 1995)

ABSTRACT. In this paper, we obtain the radiuses of univalence, starlikeness and convexity
for convolutions of starlike functions.

KEY WORDS AND PHRASES:Hadamard products, starlike and convex functions.
1991 AMS SUBJECT CLASSIFICATION CODES: 30C45, 30C55.

1. INTRODUCTION

Let \(\mathcal{A} \) denote the class of functions \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \) that are analytic in the unit
disc \(D = \{ z : |z| < 1 \} \), and let \(S \) denote the subclass of \(\mathcal{A} \) consisting of univalent functions. Let
\(S^* \) and \(K \) be the usual subclasses of \(S \) consisting of starlike and convex functions, respectively,
that is, \(S^* = \{ f : \text{Re}(zf'(z))/f(z) > 0 \} \) and \(K = \{ f : \text{Re}(1 + z f''(z)/f'(z)) > 0 \} \). The con-
volution or Hadamard product of two power series \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) and \(g(z) = \sum_{n=0}^{\infty} b_n z^n \)
is defined as the following power series \((f * g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n \). Hadamard products have
many interesting properties and important applications, see [3] and [4]. It is well known that
if \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in S^* \), then \(z + \sum_{n=1}^{\infty} a_n z^n = \int_0^z \frac{f(t)}{t} \, dt \in K \).

Theorem A (see [1]). If \(f \in K \) and \(g \in K \) (\(g \in S^* \)), then \(f * g \in K \) (\(f * g \in S^* \)).

However, it is also known that if \(f \in S^* \) and \(g \in S^* \), \(f * g \) need not be in \(S^* \). Furthermore,
Sheil-Small in [2] showed that \(f * g \) need not be in \(S \) for \(f \in S^* \) and \(g \in S^* \).

2. MAIN RESULTS

Lemma 1. Let \(F(z) = z + \sum_{n=2}^{\infty} n^2 z^n \). Then \(F(z) \) is starlike in \(|z| < 2 - \sqrt{3} \approx 0.268 \).
The result is sharp.

Proof. Noting that
\[
F(z) = \frac{(z + 1)z}{(1 - z)^2}
\]
and differentiating logarithmically both sides of (1), we have
\[
\frac{z F'(z)}{F(z)} = \frac{z^2 + 4z + 1}{(1 + z)(1 - z)} = \frac{1 + z}{1 - z} - \frac{1}{1 + z} + \frac{1}{1 - z}.
\]
It follows from (2) that
\[
\text{Re} \left(\frac{z F'(z)}{F(z)} \right) \geq \frac{1 - r}{1 + r} - \frac{1}{1 - r} + \frac{1}{1 + r} = \frac{r^2 - 4r + 1}{(1 + r)(1 - r)},
\]
where \(r = |z| \). Thus, if \(|z| < 2 - \sqrt{3} \), then \(\text{Re}(z F'(z)/F(z)) > 0 \). So \(F(z) \) is starlike for
\(|z| < 2 - \sqrt{3} \). Since \(F'(-2 + \sqrt{3}) \neq 0 \), we know that the result is sharp.

Lemma 2. Let \(F(z) = z + \sum_{n=2}^{\infty} n^2 z^n \), then \(F(z) \) is convex in \(|z| < 5 - 2\sqrt{6} \approx 0.101 \).
The result is sharp.

Proof. Using (1), we have
\[
1 + \frac{z F''(z)}{F'(z)} = \frac{(1 + z)(z^2 + 10z + 1)}{(1 - z)(z^2 + 4z + 1)} = \frac{1 + z}{1 - z} + \frac{2}{z + 2 + \sqrt{3}} - \frac{2 - \sqrt{3}}{z + 2 - \sqrt{3}}.
\]
\[\text{Re} \left(1 + \frac{z F''(z)}{F'(z)} \right) \geq \frac{1 - r}{1 + r} + \frac{2}{2 + \sqrt{3} - r} - \frac{2 - \sqrt{3}}{2 + \sqrt{3} - r} = \frac{(1 - r)(r^2 - 10r + 1)}{(1 + r)(r^2 - 4r + 1)} \]

for \(r = |z| < 2 - \sqrt{3} \). Thus, we have \(\text{Re}(1 + z F''(z)/F'(z)) > 0 \) for \(|z| < 5 - 2\sqrt{6} \). Hence \(F(z) \) is convex for \(|z| < 5 - 2\sqrt{6} \). It is clear that the result is sharp.

Theorem 1. Let \(f \in S^* \) and \(g \in S^* \), then \(f \ast g \) is univalent and starlike for \(|z| < r_0 = 2 - \sqrt{3} \) and the constant \(r_0 \) cannot be replaced by any larger number.

Proof. Let \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in S^* \), \(g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in S^* \) and \(G(z) = f(z) * g(z) \). Then

\[G(z) = (z + \sum_{n=2}^{\infty} a_n z^n) * (z + \sum_{n=2}^{\infty} b_n z^n) = (z + \sum_{n=2}^{\infty} \frac{a_n}{n} z^n) * (z + \sum_{n=2}^{\infty} \frac{b_n}{n} z^n). \]

We know that \(z + \sum_{n=2}^{\infty} a_n z^n \in K \) and \(z + \sum_{n=2}^{\infty} b_n z^n \in K \). By Theorem A, we get

\[(z + \sum_{n=2}^{\infty} a_n z^n) * (z + \sum_{n=2}^{\infty} b_n z^n) \in K. \]

Now, let \(H(z) = (z + \sum_{n=2}^{\infty} a_n z^n) * (z + \sum_{n=2}^{\infty} b_n z^n) \), then \(H(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n \). So that

\[G(z) = (z + \sum_{n=2}^{\infty} \frac{a_n}{n} z^n) * H(z) = F(z) * H(z), \]

where \(F(z) = z + \sum_{n=2}^{\infty} a_n z^n \). By Lemma 1, we know that \(F(z) \) is starlike for \(|z| < r_0 = 2 - \sqrt{3} \). Hence \(F(r_0 z)/r_0 \in S^* \). Since \(H(z) \in K \), by Theorem A we have

\[B(z) = (F(r_0 z)/r_0) * H(z) = z + \sum_{n=2}^{\infty} a_n b_n r_0^{n-1} z^n \in S^*. \]

Therefore, \(G(z) = r_0 B(z/r_0) \) is starlike for \(|z| < r_0 = 2 - \sqrt{3} \).

Finally, we show that \(r_0 \) cannot be replaced by any larger number. Taking \(\frac{z}{(1 - z)^2} \in S^* \), for \(G(z) = \frac{z}{(1 - z)^2} * \frac{z}{(1 - z)^2} = z + \sum_{n=2}^{\infty} n^2 z^n \), we have \(G'(-r_0) = 0 \). Thus, for any \(r > r_0 \), \(G(z) \) is not univalent for \(|z| < r \). This completes the proof of our theorem.

Theorem 2. Let \(f \in S^* \) and \(g \in S^* \), then \(f \ast g \) is convex for \(|z| < r_1 = 5 - 2\sqrt{6} \) and the constant \(r_1 \) cannot be replaced by any larger number.

Proof. By the method used in the proof of Theorem 1 and by using Lemma 2, we get Theorem 2 immediately and the sharpness of the result in Theorem 2 is obtained from (3).

Remark. The constant \(r_0 \) in Theorem 1 is usually referred to as the radius of univalence and starlikeness, while the constant \(r_1 \) in Theorem 2 is called the radius of convexity.

REFERENCES
