ON THE EXTREME POINTS OF SOME CLASSES OF HOLOMORPHIC FUNCTIONS

NICOLAS SAMARIS

Department of Mathematics
University of Patras
Patras 26110 Greece

(Received February 1, 1994 and in revised form June 30, 1994)

ABSTRACT. Let U be the unit disk, $D \supset U$ an open connected set and $z_0 \in D$. Let also $P(z_0, c, D)$ be the class of holomorphic functions in D for which $f(z_0) = c$ and $\text{Re} f(z) > 0$ in U. We find the extreme points of the class $P(z_0, c, D)$.

KEY WORDS AND PHRASES. Extreme points, positive real part.

1991 AMS SUBJECT CLASSIFICATION CODES 30C45.

1. INTRODUCTION.

Let U be the unit disk $\{z : |z| < 1\}$, $D \supset U$ an open connected set, $z_0 \in D$ and $H(D)$ be the class of holomorphic functions in D. By $P(z_0, c, D)$ we denote the class of the functions $f \in H(D)$ for which $f(z_0) = c$ and $\text{Re} f(z) > 0$ in U. Let $EP(z_0, c, D)$ be the subclass of the extreme points of the above class for $P = P(0, 1, U)$ it has proven [1] that

$$EP = \{(e + z)(e - z)^{-1} : e \in \partial U - D\},$$

In this paper we find the points of the subclass $EP(z_0, c, D)$.

2. MAIN RESULT.

THEOREM. (i) If $(1 - |z_0|)\text{Re} c \leq 0$ then $EP(z_0, c, D) = \emptyset$. (ii) If $(1 - |z_0|)\text{Re} c > 0$ then $f \in EP(z_0, c, D)$ iff it has the form

$$f(z) = x_1(\frac{\epsilon + z}{\epsilon - z}) + ix_2,$$

where $\epsilon \in \partial U - D$, $x_1 = \text{Re} \{\text{Re}(\frac{\epsilon + z}{\epsilon - z_0})\}^{-1}$ and $x_2 = \text{Im} c - x_1, \text{Im}(\frac{\epsilon + z}{\epsilon - z_0})$.

PROOF. Let $f \in P(z_0, c, D)$ with $f(z) = \sum_{n=0}^{\infty} \alpha_n z^n$ in U. Let also $r < 1$, S be a complex number and $M > 0$ such that $0 < 2|S| < M$ and $z \in \partial U$. Since

$$[1 \pm \frac{1}{M}(Sz + \overline{S}z^{-1})]\text{Re} f(rz) > 0$$

then

$$\text{Re} [f(rz) \pm \frac{1}{M}(Sz f(rz) + \overline{S} \sum_{n=0}^{\infty} \alpha_n r^n z^{n-1} + S\overline{\alpha}_0 z)]$$

(1)

By the maximum principle for harmonic functions it follows that (1) holds for every $z \in U$. Therefore for $r \to 1$ we have $\text{Re} (f(z) \pm u_1(z)) > 0$ in U where

$$u_1(z) = \frac{1}{M}[^{\overline{S}}z^{-1}(f(z) - \alpha_0) + S\overline{\alpha}_0 z + Sz f(z)]$$

(2)
Choosing appropriate \(S \neq 0 \) we get \(\text{Re}u_1(z_0) = 0 \). Setting \(u(z) = u_1(z) - i \text{Im}u_1(z_0) \) from \(u(z_0) = 0 \) it follows that \(f \pm u \in \mathcal{P}(z_0, c, D) \).

Let now \(f \in \mathcal{E}P(z_0, c, D) \). Then it is obvious that \(u(z) = 0 \) in \(D \). If we set \(S = |S|e^{i(\psi + \delta)} \) then from equality \(u = 0 \) we conclude that \(f \) has the form

\[
f(z) = \frac{\xi_1(1 + z^2e^{2i\psi}) + \xi_2ze^{i\psi}}{1 - z^2e^{2i\psi}} + i\xi_3 =
\]

\[
\frac{1}{2}(\xi_1 + \xi_2)\left(1 + \frac{e^{i\psi}z}{1 - e^{i\psi}z}\right) + \frac{1}{2}(\xi_1 - \xi_2)\left(1 - \frac{e^{i\psi}z}{1 + e^{i\psi}z}\right) + i\xi_3,
\]

where \(\xi_1, \xi_2, \xi_3 \in \mathbb{R} \).

We now prove that \(|\xi_2| = 2\xi_1 \). From the Caratheodory’s inequality we have \(|f'(0)| \leq 2\text{Re}f(0) \) and hence \(|\xi_2| \leq 2\xi_1 \). If \(|\xi_2| < 2\xi_1 \) then there are \(\xi_1^*, \xi_2^* \) such that \(0 < |\xi_1^*| < \xi_1 + \frac{\xi_2}{2}, 0 < |\xi_2^*| < \xi_1 - \frac{\xi_2}{2} \), and \(\text{Re}u_1^*(z_0) = 0 \), where

\[
u_1^*(z) = \xi_1^*(1 + \frac{e^{i\psi}z}{1 - e^{i\psi}z}) + \xi_2^*(1 - \frac{e^{i\psi}z}{1 + e^{i\psi}z})
\]

Setting \(u^*(z) = u_1^*(z) - i\text{Im}u_1^*(z_0) \) then \(f \pm u^* \in \mathcal{P}(z_0, c, D) \). Since \(f \in \mathcal{E}P(z_0, c, D) \) it follows that \(u^* = 0 \) and hence \(\xi_1^* = \xi_2^* = 0 \). Therefore if \(f \in \mathcal{E}P(z_0, c, D) \) then \(|\xi_2| = 2\xi_1 \) and hence \(f \) has the form

\[
f(z) = z_1\left(\frac{\epsilon + z}{\epsilon - z}\right) + i\epsilon \epsilon_1, z_1 > 0, \epsilon \epsilon_2 > 0, \epsilon \epsilon \in \partial U - D.
\]

From (4) we have

\[
x_1 = \text{Re}[\text{Re}(\frac{\epsilon + z_0}{\epsilon - z_0})]^{-1} > 0 \text{ and hence } (1 - |z_0|)\text{Re} > 0.
\]

Let \(f \in \mathcal{P}(z_0, c, D) \) and having the form (4). Let also \(0 < \lambda < 1 \) and \(f_1, f_2 \in \mathcal{E}P(z_0, c, D) \) such that \(f = \lambda f_1(1 - \lambda)f_2 \). Then

\[
\frac{\epsilon + z}{\epsilon - z} = \lambda^*g_1(z) + (1 - \lambda^*)g_2(z) \quad \text{in } U,
\]

where

\[
\lambda^* = \lambda \frac{\text{Re}f_1(0)}{\text{Re}f(0)}, \quad g_i(z) = \frac{f_i(z) - i\text{Im}f_i(0)}{\text{Re}f_i(0)}, \quad i = 1, 2.
\]

Since

\[
\frac{\epsilon + z}{\epsilon - z} \in \mathcal{E}P \text{ and } g_i \in \mathcal{P}
\]

then

\[
\frac{\epsilon + z}{\epsilon - z} = g_1(z) = g_2(z) \text{ in } U.
\]

From the identity Theorem and the restrictions \(f(z_0) = f_1(z_0) = f_2(z_0) = c \), we obtain \(f = f_2 \) and hence \(f \in \mathcal{E}P(z_0, c, D) \).

REFERENCES

Submit your manuscripts at
http://www.hindawi.com