THE RADICAL FACTORS OF \(f(x) - f(y) \) OVER FINITE FIELDS

JAVIER GOMEZ-CALDERON
Department of Mathematics
New Kensington Campus
The Pennsylvania State University
New Kensington, PA 15068, U.S.A.

(Received October 6, 1995 and in revised form April 23, 1996)

ABSTRACT. Let \(F \) denote the finite field of order \(q \). For \(f(x) \) in \(F[x] \), let \(f^*(x, y) \) denote the substitution polynomial \(f(x) - f(y) \). The polynomial \(f^*(x, y) \) has frequently been used in questions on the values set of \(f(x) \). In this paper we consider the irreducible factors of \(f^*(x, y) \) that are "solvable by radicals." We show that if \(R(x, y) \) denotes the product of all the irreducible factors of \(f^*(x, y) \) that are solvable by radicals, then \(R(x, y) = g(x) - g(y) \) and \(f(x) = G(g(x)) \) for some polynomials \(g(x) \) and \(G(x) \) in \(F[x] \).

KEY WORDS AND PHRASES: Finite fields, polynomials

1991 AMS SUBJECT CLASSIFICATION CODES: 11T06

Let \(F_q \) denote the finite field of order \(q \) and characteristic \(p \). For \(f(x) \) in \(F_q[x] \), let \(f^*(x, y) \) denote the substitution polynomial \(f(x) - f(y) \). The polynomial \(f^*(x, y) \) has frequently been used in questions on the values set of \(f(x) \), see for example Wan [1], Dickson [2], Hayes [3] and Gomez-Calderon and Madden [4]. Recently in [5] and [6], Cohen and in [7], Acosta and Gomez-Calderon studied the linear and quadratic factors of \(f^*(x, y) \) that are "solvable by radicals" over the field of rational functions \(F_q(x) \), i.e., those factors that have the form

\[
\prod_{j=1}^{d} (y - R_j(x))
\]

where \(R_j(x) \) denotes a radical expression in \(x \) over the algebraic closure of \(F_q \). We will show that if \(R(x, y) \) is the product of all the irreducible factors of \(f^*(x, y) \) that are solvable by radicals, then \(R(x, y) = g(x) - g(y) \) and \(f(x) = G(g(x)) \) for some polynomials \(g(x) \) and \(G(x) \) in \(F_q[x] \). More precisely, we will prove the following:

THEOREM. Let \(f(x) \) denote a monic polynomial of degree \(d \) and coefficients in \(F_q \). Assume \(f(x) \) is separable. Let the prime factorization of \(f^*(x, y) = f(x) - f(y) \) be given by

\[
f^*(x, y) = \prod_{i=1}^{n} f_i(x, y).
\]

Assume that \(f_1(x, y), f_2(x, y), \ldots, f_n(x, y) \) are all the irreducible factors of \(f^*(x, y) \) that are solvable by radicals. Say...
where \(R_{ij}(x) \) denotes a radical expression in \(x \) over the algebraic closure of \(F_q \) for all \(1 \leq i \leq r \) and \(1 \leq j \leq d_i = \deg(f_i) \). Then

\[
R(x, y) = \prod_{i=1}^{r} f_i(x, y) = g(x) - g(y)
\]

and

\[
f(x) = G(g(x))
\]

for some polynomials \(g(x) \) and \(G(x) \) in \(F_q[x] \).

Proof. It is clear that \(f^*(x, R_{ij}(x)) = f(x) - f(R_{ij}(x)) = 0 \) for all \(1 \leq j \leq \deg(f_i) = d_i \) and \(1 \leq i \leq r \). So,

\[
f(R_{ij}(F_{tk}(x))) = f(R_{tk}(x)) = f(x)
\]

and

\[
\{ R_{ij}(R_{tk}(x)) : 1 \leq i, t \leq r, 1 \leq j \leq d_i, 1 \leq k \leq d_t \}
\]

is a subset of

\[
\{ R_{ij}(x) : 1 \leq i \leq r, 1 \leq j \leq d_i \}.
\]

One also sees that \(R_{ij}(x) \) is not algebraic over the field \(F_q \) for all \(1 \leq i \leq r \) and \(1 \leq j \leq d_i \). Hence, the separability of \(f_k(x, y) \) implies the separability of \(f_k(R_{ij}(x), y) \in F_q(x)[y] \) and consequently \(f_k(R_{ij}(x), y) \) and \(f_i(R_{ij}(x), y) \) have no common factors if \(k \neq t \). Therefore,

\[
R(R_{ij}(x), y) = \prod_{k=1}^{r} f_k(R_{ij}(x), y)
\]

\[
= \prod_{k=1}^{r} \prod_{t=1}^{d_t} (y - R_{kt}(R_{ij}(x)))
\]

\[
= R(x, y)
\]

(1)

for all \(1 \leq i \leq r \) and \(1 \leq j \leq d_i \).

Now, write

\[
R(x, y) = \sum_{t=0}^{D} h_t(x)y^t
\]

where \(h_t(x) \in F_q[x] \) for \(0 \leq t \leq D = d_1 + d_2 + \ldots + d_r \) and \(\deg(h_t(x)) < D \) for \(1 \leq t \leq D \). So, combining with (1),

\[
\sum_{t=0}^{D} h_t(R_{ij}(x))y^t = \sum_{t=0}^{D} h_t(x)y^t
\]

for all \(1 \leq i \leq r \) and \(1 \leq j \leq d_i \). Hence, \(h_t(x) - h_t(x) \in F_q(x)[z] \) has degree less than \(D \) and \(D \) distinct roots for \(t = 1, 2, \ldots, D \). Thus, \(R(x, y) = H_1(x) - H_2(y) \) for some polynomials \(H_1(x) \) and \(H_2(y) \) with coefficients in \(F_q \). Further, since \(R(x, x) = 0 \), we conclude that \(H_1(x) = H_2(x) = g(x) \in F_q[x] \) and therefore

\[
f^*(x, y) = (g(x) - g(y)) \prod_{i=r+1}^{n} f_i(x, y).
\]
Now we write
\[f(x) = a_0(x) + a_1(x)g(x) + \ldots + a_m(x)g^m(x) \]
where \(a_i(x) \in F_q[x] \) and \(\deg(a_i(x)) < D = \deg(g(x)) \) for \(i = 0, 1, \ldots, m \). This decomposition is clearly unique and

\[
\sum_{k=0}^{m} a_k(x)g^k(x) = f(x)
\]

\[
= f(R_i(x))
\]

\[
= \sum_{k=0}^{m} a_k(R_i(x))g^k(R_i(x))
\]

\[
= \sum_{k=0}^{m} a_k(R_i(x))g^k(x)
\]

for all \(1 \leq i \leq r \) and \(1 \leq j \leq d \). Hence, the polynomials in \(y \)

\[A(x, y) = \sum_{k=0}^{m} (a_k(x) - a_k(y))g^k(x) \]

has degree less than \(D \) and \(D \) distinct roots. Thus, \(A(x, y) = 0 \) and in particular

\[A(x, 0) = \sum_{k=0}^{m} (a_k(x) - a_k(0))g^k(x) = 0. \]

Therefore, \(a_k(x) = a_k(0) = c_k \in F_q \) for \(0 \leq k \leq m \) and \(f(x) = G(g(x)) \) where

\[G(x) = \sum_{i=0}^{m} c_i x^i \in F_q[x]. \]

COROLLARY. Let \(f(x) \) denote a separable and indecomposable polynomial over the field \(F_q \). Assume \(f^*(x, y)/(x - y) \) has an irreducible factor that is solvable by radicals. Then every irreducible factor of \(f^*(x, y)/(x - y) \) is solvable by radicals.

PROOF. With notation as in the theorem, \(R(x, y) = g(x) - g(y) \) and \(f(x) = G(g(x)) \) for some \(g(x) \) and \(G(x) \in F_q[x] \) with \(\deg(g(x)) \geq 2 \). Therefore, since \(f(x) \) is indecomposable, \(f(x) = g(x) \) and the proof of the lemma is complete.

EXAMPLES. With notation as in the theorem and assuming that \((d, q) = 1 \),

(i) if \(R(x, y) \) has a total of \(r \) linear factors, then \(f(x) = G((x - c)^r) \) for some \(c \in F_q \) and \(G(x) \in F_q[x] \).

(ii) if \(R(x, y) \) has a total of \(r \) quadratic irreducible factors with non-zero \(xy \)-term and \(q \) is odd, then \(f(x) = G(g_{e,t}(x - c)) \) where \(g_{e,t}(x) \) denotes a Dickson polynomial of parameter \(e \) and degree \(t = 2r + 1 \) or \(2r + 2 \).

(iii) if \(R(x, y) \) has a total of \(s \geq 1 \) quadratic irreducible factors with no \(xy \)-term and \(q \) is odd, then \(f(x) = G((x^2 - c)^{s+1}) \) for some \(c \in F_q \) and \(G(x) \in F_q[x] \).

(iv) if \(R(x, y) \) has a total of \(t \geq 1 \) factors of the form \(x^n - By^n + A \) with \(A \neq 0 \), then \(f(x) = G((x^m - c)^{t+1}) \) for some \(c \in F_q \) and \(G(x) \in F_q[x] \).

A proof of (i), (ii) and (iii) can be found in [7]. A proof of (iv) follows.

Let \(x^n - b_1 y^n + a_1, x^n - b_2 y^n + a_2, \ldots, x^n - b_t y^n + a_t \) be all the irreducible factors of \(f^*(x, y) \) of the form \(x^n - By^n + A \) with \(A \neq 0 \). So, considering only the highest degree terms,

\[x^d - y^d = \prod_{i=1}^{t} (x^n - b_i y^n)g(x, y) \]
for some $g(x, y) \in F_q[x, y]$ and n/d. Hence, if μ denotes a primitive n-th root of unity, then $x^n - b_1y^n + a_i$ is a factor of $f(\mu^j x) - f(y)$ for all $1 \leq i \leq t$ and $0 \leq j < n$. Therefore, all the factors $x^n - b_1y^n + a_i, 1 < i < t$, divide both $f(x) - f(y)$ and $f(\mu^j x) - f(y)$ and consequently the difference $f(x) - f(\mu^j x)$ for all $0 \leq j < n$. Thus, $x^n - y^n$ is a factor of $f^*(x, y)$ and $f(x) = h(x^n)$ for some $h(x) \in F_q[x].$

Now write

$$f^*(x, y) = h^*(x^n, y^n) = (x^n - y^n) \prod_{i=1}^t (x^n - b_1y^n + a_i) \prod_{i=1}^e f_i(x^n, y^n)$$

for some irreducible polynomials $f_1(x, y), f_2(x, y), \ldots, f_e(x, y)$ in $F_q[x, y]$. So, $x - y, x - b_1y + a_1, x - b_2y + a_2, \ldots, x - b_ty + a_t$ are linear factors of $h^*(x, y)$. Therefore, see [7, Lemma 2], $h(x) = G((x - c)^{t+1})$ and $f(x) = h(x^n) = G((x^n - c)^{t+1})$ for some $c \in F_q$ and $G(x)$ in $F_q[x].$

ACKNOWLEDGMENT. The author thanks the referee for his suggestions which improved the final version of the paper.

REFERENCES
