ON X-VALUED SEQUENCE SPACES

S. PEHLIVAN

Department of Mathematics
S.D. University, Isparta, Turkey.

(Received January 11, 1995 and in revised form October 7, 1995)

ABSTRACT. Certain spaces of X-valued sequences are introduced and some of their properties are investigated. Köthe-Toeplitz duals of these spaces are examined.

KEY WORDS AND PHRASES: Seminormed vector space, linear operators, X-valued sequence spaces, dual spaces, infinite matrices.

1991 AMS SUBJECT CLASSIFICATION CODES: 40A05, 46A45.

1. INTRODUCTION AND BACKGROUND.

Let c_0, c, l_0 and s respectively denote the spaces of null sequences, convergent sequences, bounded sequences and all sequences. Let X be a complex linear space with zero element 0 and $X, (X, ||.||)$ be a seminormed space. We may define $c_0(X)$ the null X-valued sequences, $c(X)$ the convergent X-valued sequences, $l_0(X)$ the bounded X-valued sequences and $s(X)$ the vector space of all X-valued sequences. If we take $X = C$ the set of complex numbers these spaces reduce to the already familiar spaces c_0, c, l_0 and s respectively. These spaces of X-valued sequences have been studied by Maddox[2,3], Rath[5], Pehlivan[4] and others. We take X and Y to be complete seminormed spaces and (A_n) to be a sequence of linear operators from X into Y. We denote by $B(X, Y)$ the space of bounded linear operators on X into Y. Throughout the paper S denotes the unit ball in X, that is $S = \{ x \in X : ||x|| \leq 1 \}$ is the closed unit sphere in X.

The α and β-duals of Köthe have been generalized by Robinson [6] who replaced scalar sequences by sequences of linear operators. Accordingly, we define α and β duals of a subspace E of $s(X)$ by

$$E^\alpha = \{ (A_n) : \sum_n ||A_n x_n|| \text{ converges for all } x = (x_n) \in E \},$$

$$E^\beta = \{ (A_n) : \sum_n A_n x_n \text{ converges in } Y \text{ for all } x = (x_n) \in E \}.$$

Clearly $E^\alpha \subset E^\beta$ if Y is complete and the inclusion may be strict. X^* will denote the continuous dual of X, this is $B(X, C)$.

2. MAIN RESULTS

Before proving the main results we give some definitions. We consider a set D of sequences $d = (d_n)$ of non-negative real numbers with the following properties:

(i) For each positive integer n there exists $d \in D$ with $d_n > 0$,

(ii) D is directed in the sense that for $d, h \in D$ there exists $u \in D$ such that $u_n \geq d_n, h_n$ for all n.

For $d = (d_n) \in D$ and X a seminormed vector space, we define the following sequence spaces:

$$L_\infty(X, d) = \{ x = (x_n) : D_d(x) = \sup_n ||x_n||d_n < \infty, \ x_n \in X \text{ for all } n, \ d \in D \},$$

$$C_0(X, d) = \{ x = (x_n) : \lim_n ||x_n||d'_n = 0, \ x_n \in X \text{ for all } n, \ d \in D \}.$$

PROPOSITION 2.1 $C_0(X, d)$ is a closed subspace of $L_\infty(X, d)$.

PROOF. Let \(x \in \tilde{C}_0(X,d) \) and \(d = (d_n) \in D \). Given \(\epsilon > 0 \) there exists \(x' = (x'_n) \in C_0(X,d) \) such that \(D_d(x - x') < \frac{\epsilon}{2} \). If \(N \) is such that \(d_n ||x'_n|| < \frac{\epsilon}{2} \) for \(n \geq N \), then for \(n \geq N \) we have
\[
d_n ||x_n - x'_n|| = d_n ||x_n - x'_n + x'_n|| \leq d_n (||x_n - x'_n|| + ||x'_n||) < \epsilon
\]
which proves that \(x \in C_0(X,d) \).

PROPOSITION 2.2 If \(X \) is complete then \(C_0(X,d) \) and \(L_\infty(X,d) \) are FK spaces.

PROOF. Let \(X \) be a complete seminormed space. We show that \(L_\infty(X,d) \) is complete. Let \(x = (x_n) \) be a Cauchy sequence in \(L_\infty(X,d) \). Then \(||x_n - x'_n|| \leq d_n^{-1} D_d(x - x') < \epsilon \), therefore \((x_n) \) is Cauchy in \(X \). Let \(x_n = \lim_n x_n \). Now we will show that \(x = (x_n) \in L_\infty(X,d) \) and \(x - x \). In fact, let \(h \in D \) and \(\epsilon > 0 \). Choose \(N \) such that \(D_h(x' - x') < \epsilon \) if \(i,j \geq N \). It follows from this that, we have \(||x_n - x||_h < \epsilon \) for all \(n \) and \(i \geq N \). Let \(H = D_h(x_N) \). If \(||x_n|| \leq ||x_N|| \) then \(||x_n||_h \leq H \). If \(||x_n|| > ||x_N|| \) then
\[
||x_n|| = ||x_n - x_N + x_N||_h \leq ||x_n - x_N||_h + ||x_N||_h < \epsilon + H
\]
which shows that \(L_\infty(X,d) \) is complete. The completeness of \(C_0(X,d) \) follows from the completeness of \(L_\infty(X,d) \) and the Proposition 2.1.

THEOREM 2.3 \(C_0(X,d) \subseteq L_\infty(X,d) \) if and only if for each \(d = (d_n) \in D \) there exists \(h \in D \) and a sequence \((u_n) \) of non-negative real numbers such that \(u_n \rightarrow 0 \) and \(d_n \leq u_n h_n \) for all \(n \).

PROOF. Let \(x \in L_\infty(X,d) \). Given \(d = (d_n) \in D \) there exist \(h = (h_n) \in D \) and a sequence \((u_n) \) of non-negative real numbers such that \(u_n \rightarrow 0 \) and \(d_n \leq u_n h_n \) for all \(n \). Now, for \(x \in L_\infty(X,d) \), we have
\[
d_n ||x_n|| \leq u_n h_n ||x_n|| \leq u_n D_h(x)
\]
This concludes the proof of the theorem with the Proposition 2.1.

LEMMA 2.4 In order for \(C_0(X,d) \subseteq C_0(X,h) \) it is necessary and sufficient that \(\liminf_n \frac{h_n}{d_n} > 0 \).

PROOF. Suppose that \(\liminf_n \frac{h_n}{d_n} = \alpha > 0 \). Then since \(d_n > \alpha h_n \) the inclusion \(C_0(X,d) \subset C_0(X,h) \) is obvious. Now we suppose \(\liminf_n \frac{h_n}{d_n} = 0 \). Then there exists a subsequence \((n(p)) \) of \((n) \) such that \(h_{n(p)} > pd_{n(p)} \) for \(p = 1,2,\ldots \). Now define a sequence \(x = (x_n) \) by putting \(x_{n(p)} = ud_{n(p)}^{-1}p^{-1} \) for \(p = 1,2,\ldots \) and \(x_n = \theta \) otherwise where \(v \in X \) and \(||v|| = 1 \). Then we have \(x = (x_n) \in C_0(X,d) \) but \(x \notin C_0(X,h) \) since \(||h_{n(p)} x_{n(p)}|| = ||h_{n(p)} d_{n(p)}^{-1} p^{-1} v|| > 1 \). The concludes the proof of the theorem.

LEMMA 2.5 In order for \(C_0(X,h) \subset C_0(X,d) \) it is necessary and sufficient that \(\limsup_n \frac{d_n}{h_n} < \infty \).

PROOF. Suppose that \(\limsup_n \frac{d_n}{h_n} = \beta < \infty \). Then there is \(K > 0 \) such that \(d_n < Kh_n \) for all large values of \(n \). The inclusion \(C_0(X,h) \subset C_0(X,d) \) is obvious. Now we suppose \(\limsup_n \frac{d_n}{h_n} = \infty \). Then there exists a subsequence \((n(p)) \) of \((n) \) such that \(d_{n(p)} > ph_{n(p)} \) for \(p = 1,2,\ldots \). We define a sequence \(x = (x_n) \) by putting \(x_{n(p)} = \theta \) otherwise where \(v \in X \) and \(||v|| = 1 \). Then we have \(x \in C_0(X,h) \) but \(x \notin C_0(X,d) \) since \(||d_{n(p)} x_{n(p)}|| = ||d_{n(p)} h_{n(p)}^{-1} p^{-1} v|| > 1 \). The concludes the proof of the lemma.

Combining Lemma 2.4. and 2.5. we have following theorem.

THEOREM 2.6 \(C_0(X,h) = C_0(X,d) \) if and only if \(\liminf_n \frac{h_n}{d_n} \leq \limsup_n \frac{d_n}{h_n} < \infty \).

THEOREM 2.7 Let \(\liminf_n \frac{d_n}{h_n} > 0 \). The identity mapping of \(C_0(X,d) \) into \(C_0(X,h) \) is continuous.

PROOF. Let \(\liminf_n \frac{d_n}{h_n} > 0 \). Then \(C_0(X,d) \subset C_0(X,h) \). There exists \(\alpha > 0 \) such that \(d_n > \alpha h_n \) for all \(n \). Thus for \(x \in C_0(X,d) \) we have \(\alpha D_h(x) \leq D_d(x) \) hence the identity mapping is continuous.

3. GENERALIZED KÖTHE-TOEPLITZ DUALS

Now we determine Köthe-Toeplitz duals in the operator case for the sequence space \(C_0(X,d) \). For the more interesting sequence spaces generalized Köthe-Toeplitz duals were determined by Maddox [3]. In the following theorems we suppose in general that \((A_n) \) is a sequence of linear operators \(A_n \) mapping
ON X-VALUED SEQUENCE SPACES

a complete seminormed space X into a complete seminormed space Y. Let $(A_n) = (A_1, A_2, \ldots)$ be a sequence in $B(X, Y)$. Then the group norm of (A_n) is defined by

$$
\|(A_n)\| = \sup \| \sum_{n=1}^{k} A_n x_n \|
$$

where the supremum is taken over all $k \in \mathbb{N}$ and all $x_n \in S$. This argument was introduced by Robinson [6]. This concept was termed as group norm by Lorentz and Macphail [1]. We start with the proposition given by Maddox [3].

PROPOSITION [M][3] If (A_n) is a sequence in $B(X, Y)$ and we write $R_k = (A_k, A_{k+1}, \ldots)$ then $\| \sum_{n=k}^{p} A_n x_n \| \leq \| R_k \| \max \{ \| x_n \| : k \leq n \leq k+p \}$, for any x_n and all $k \in \mathbb{N}$, and all $p > 0$ integers.

THEOREM 3.1 Let $(d_n) \in D$. Then $(A_n) \in C^0(X, d)$ if and only if there exists an integer k such that

(i) $A_n \in B(X, Y)$ for each $n \geq k$ and

(ii) $\sum_{n=k}^{\infty} \| A_n \| d_n^{-1} < \infty$.

PROOF. For the sufficiency, let $x = (x_n) \in C_0(X, d)$ and (i), (ii) hold. Then there exists an integer n_1 such that $\| x_n \| d_n < 2\epsilon$ for all $n \geq n_1$ and there exists an integer $n_2 \geq k$ such that

$$
\sum_{n \geq n_2} \| A_n \| d_n^{-1} < \frac{\epsilon}{2}
$$

for a given $\epsilon > 0$. Put $H = \max(n_1, n_2)$ so that

$$
\sum_{n \geq H} \| A_n x_n \| = \sum_{n \geq H} \| A_n \| \| x_n \| \leq \sum_{n \geq H} \| A_n \| 2\epsilon d_n^{-1} < \epsilon,
$$

and therefore $(A_n) \in C^0(X, d)$.

Conversely, suppose that $(A_n) \in C^0(X, d)$. If (i) does not hold then there exists a strictly increasing sequence (n_i) of natural numbers such that A_{n_i} is not bounded for each i and a sequence (v_n) in S such that $\| A_{n_i} v_n \| > d_{n_i}$ for each $i \geq 1$. Define the sequence $x = (x_n)$ by putting $x_{n_i} = v_i d_{n_i}^{-1}$ for each $i \geq 1$ and $x = \theta$ otherwise. We have $x \in C_0(X, d)$ but $\| A_{n_i} x_n \| > 1$ for each $i \geq 1$ and so $\sum_n \| A_n x_n \|$ diverges, which gives a contradiction.

Now we suppose $(A_n) \in C^0(X, d)$ and $\sum_{n \geq k} \| A_n \| d_n^{-1} = \infty$. We choose $k = n_1 < n_2 < n_3 \ldots$ such that $\sum_{n=n_i}^{n_{i+1}-1} \| A_n \| d_n^{-1} > 1$ for $i \in \mathbb{N}$. Moreover for each $n \geq k$ there exists a sequence (v_n) in S such that $2\| A_n v_n \| \geq \| A_n \|$. Define the sequence $x = (x_n)$ by putting $x_n = v_n d_n^{-1} i^{-1}$ for $i \leq n \leq n_{i+1} - 1$ for $i = 1, 2, \ldots$ and $x_n = \theta$ otherwise so that $x \in C_0(X, d)$ since

$$
\| x_n \| d_n = \frac{\| v_n \|}{i} \to 0 \text{ as } n \to \infty.
$$

Then we have

$$
\sum_n \| A_n x_n \| = \sum_{i=1}^{\infty} \sum_{n=n_i}^{n_{i+1}-1} \| A_n v_n d_n^{-1} i^{-1} \| \geq \frac{1}{2} \sum_{i=1}^{\infty} \sum_{n=n_i}^{n_{i+1}-1} \| A_n \| d_n^{-1} i^{-1} \geq \frac{1}{2} \sum_{i=1}^{\infty} 1
$$

which contradicts our assumption that $\sum_n \| A_n x_n \| < \infty$. This completes the proof.

It is clear that the conditions of the theorem 3.1. are also necessary and sufficient for $(A_n) \in l^\infty(X, d)$ then we have $C^0_0(X, d) = l^\infty_0(X, d)$.

COROLLARY 3.2 ([5], Theorem 1.) Let \(p_n = O(1) \). Then \((A_n) \in C_0^0(X, p) \) if and only if there exists an integer \(k \) such that condition (i) of Theorem 3.1 holds and

(iii) there exists an integer \(N > 1 \) such that \(\sum_{n \geq k} \|A_n\| N^{-\frac{1}{n}} < \infty \).

COROLLARY 3.3 ([3], Proposition 3.4.) \((A_n) \in C_0^0(X) \) if and only if there exists an integer \(k \) such that condition (i) of Theorem 3.1 holds and

(iv) \(\sum_{n=m}^{\infty} \|A_n\| < \infty \).

THEOREM 3.4 Let \((d_n) \in D \). Then \((A_n) \in C_0^0(X, d) \) if and only if there exists an integer \(k \) such that condition (i) of Theorem 3.1 holds and

(v) \(\|R_k(d)\| = \|(d_k^{-1}A_k, d_{k+1}^{-1}A_{k+1}, \ldots)\| < \infty \).

PROOF. For the sufficiency, let \((x_n) \in C_0(X, d) \) and choose \(m_1 > m \geq k \). Then, by the proposition [M] we have for \(m \geq k \)

\[
\| \sum_{n=m_1}^{m_1} A_n x_n \| = \| \sum_{n=m_1}^{m_1} d_n^{-1} A_n d_n x_n \| \leq \max\{d_n \|x_n\| : m \leq n \leq m_1\}\|R_k(d)\|.
\]

That is \(\sum_n A_n x_n \) converges in \(Y \) whence \((A_n) \in C_0^0(X, d) \). Conversely (i) can be proved in the way of Theorem 3.1. For the necessity of (v), suppose that \(\|R_k(d)\| = \infty \) for all \(n \geq k \) then there exists a strictly increasing sequence \((n_i) \) of natural numbers such that \(v_{n_i} \in S \) and \(\sum_{n=n_i}^{n_{i+1}-1} d_n^{-1} A_n v_n \rangle > i \) for \(i \in N \). Define the sequence \(x = (x_n) \) by putting \(x_n = v_n d_n^{-1} - 1 \) for \(n \leq n \leq n_{i+1} - 1, \ i = 1, 2, \ldots \) and \(x_n = \theta \) otherwise. We have \(x \in C_0(X, d) \) but for each \(i \geq 1 \)

\[
\| \sum_{n=n_i}^{n_{i+1}-1} A_n x_n \| = \| \sum_{n=n_i}^{n_{i+1}-1} A_n v_n d_n^{-1} - 1 \| > 1
\]

Therefore \(\sum_n A_n x_n \) diverges, which gives a contradiction. This proves the theorem.

COROLLARY 3.5 ([3], Proposition 3.1.) \(x_n \) for all \(n, (A_n) \in C_0^0(X) \) if and only if condition (i) of Theorem 3.1 holds and \(\|R_k\| < \infty \).

THEOREM 3.6 \(Y = C \) and \(f_n \in X^* \) for \(n \geq 1 \) then \(C_0^0(X^*, d) = C_0^0(X, d) = M_0(X^*, d) \) where \(M_0(X^*, d) = \{ F = (f_n) : f_n \in X^*, \sum_{n=1}^{\infty} \|f_n\| d_n^{-1} < \infty \} \).

PROOF. We show that \(C_0^0(X^*, d) \subseteq M_0(X^*, d) \), which is sufficient to prove of the theorem. We suppose \(F \notin M_0(X^*, d) \) then there exists a strictly increasing sequence \((n_i) \) and a sequence \((v_n) \) in \(S \) such that \(\|f_n\| < 2\|f_n(v_n)\| \) and \(\sum_{n=n_i}^{n_{i+1}-1} \|f_n\| d_n^{-1} > i \) for \(i \in N \). Define the sequence \(x = (x_n) \) by putting \(x_n = \text{sgn}(f_n(v_n)) d_n^{-1} - 1 \) for \(n \leq n \leq n_{i+1} - 1, \ i = 1, 2, \ldots \) and \(x_n = \theta \) otherwise. Then \(x \in C_0(X, d) \) but \(\sum_n f_n(x_n) = \sum_{n=n_i}^{n_{i+1}-1} f_n(x_n) \) diverges and so \(F \notin C_0^0(X, d) \). Thus \(C_0^0(X, d) \subseteq M_0(X^*, d) \) and the proof is complete.

REFERENCES

Submit your manuscripts at http://www.hindawi.com