ON X-VALUED SEQUENCE SPACES

S. PEHLIVAN

Department of Mathematics S.D. University, Isparta, Turkey.

(Received January 11, 1995 and in revised form October 7, 1995)

ABSTRACT. Certain spaces of X-valued sequences are introduced and some of their properties are investigated. Köthe- Toeplitz duals of these spaces are examined.

KEY WORDS AND PHRASES: Seminomed vector space, linear operators, X-valued sequence spaces, dual spaces, infinite matrices.

1991 AMS SUBJECT CLASSIFICATION CODES: 40A05, 46A45.

1. INTRODUCTION AND BACKGROUND.

Let c_0, c, l_∞ and s respectively denote the spaces of null sequences, convergent sequences, bounded sequences and all sequences. Let X be a complex linear space with zero element θ and $X = (X, \|.\|)$ be a seminormed space. We may define $c_0(X)$ the null X-valued sequences, c(X) the convergent X-valued sequences, $l_\infty(X)$ the bounded X-valued sequences and s(X) the vector space of all Xvalued sequences. If we take X = C the set of complex numbers these spaces reduce to the already familiar spaces c_0, c, l_∞ and s respectively. These spaces of X-valued sequences have been studied by Maddox[2,3], Rath[5], Pehlivan[4] and others. We take X and Y to be complete seminormed spaces and (A_n) to be a sequence of linear operators from X into Y. We denote by B(X,Y) the space on bounded linear operators on X into Y. Throughout the paper S denotes the unit ball in X, that is $S = \{x \in X : ||x|| \le 1\}$ is the closed unit sphere in X.

The α and β -duals of Köthe have been generalized by Robinson [6] who replaced scalar sequences by sequences of linear operators. Accordingly, we define α and β duals of a subspace E of s(X) by

$$E^{\alpha} = \{(A_n) : \sum_n ||A_n x_n|| \text{ converges for all } x = (x_n) \in E\},\$$
$$E^{\beta} = \{(A_n) : \sum_n A_n x_n \text{ converges in } Y, \text{ for all } x = (x_n) \in E\}.$$

Clearly $E^{\alpha} \subset E^{\beta}$ if Y is complete and the inclusion may be strict. X* will denote the continuous dual of X, this is B(X,C).

2. MAIN RESULTS

Before proving the main results we give some definitions. We consider a set D of sequences $d = (d_n)$ of non-negative real numbers with the following properties:

- (i) For each positive integer n there exists $d \in D$ with $d_n > 0$,
- (ii) D is directed in the sense that for $d, h \in D$ there exists $u \in D$ such that $u_n \ge d_n, h_n$ for all n. For $d = (d_n) \in D$ and X a seminormed vector space, we define the following sequence spaces:

$$L_{\infty}(X,d) = \{x = (x_n) : D_d(x) = \sup_n ||x_n|| d_n < \infty, \quad x_n \in X \text{ for all } n, \quad d \in D\},\$$

$$C_0(X,d) = \{x = (x_n) : \lim_n ||x_n|| d_n = 0, \quad x_n \in X \text{ for all } n, \quad d \in D\}.$$

PROPOSITION 2.1 $C_0(X, d)$ is a closed subspace of $L_{\infty}(X, d)$.

PROOF. Let $x \in \tilde{C}_0(X, d)$ and $d = (d_n) \in D$. Given $\epsilon > 0$ there exists $x' = (x'_n) \in C_0(X, d)$ such that $D_d(x - x') < \frac{\epsilon}{2}$. If N is such that $|d_n||x'_n|| < \frac{\epsilon}{2}$ for $n \ge N$, then for $n \ge N$ we have

 $d_n \|x_n\| = d_n \|x_n - x'_n + x'_n\| \le d_n (\|x_n - x'_n\| + \|x'_n\|) < \epsilon$

which proves that $x \in C_0(X, d)$.

PROPOSITION 2.2 If X is complete then $C_0(X, d)$ and $L_{\infty}(X, d)$ are FK spaces.

PROOF. Let X be a complete seminormed space. We show that $L_{\infty}(X, d)$ is complete. Let $x = (x_n^i)$ be a Cauchy sequence in $L_{\infty}(X, d)$. Then $||x_n^i - x_n^j|| \le d_n^{-1}D_d(x^i - x^j)$ therefore (x_n^i) is Cauchy in X. Let $x_n = \lim_{n \to \infty} x_n^i$. Now we will show that $x = (x_n) \in L_{\infty}(X, d)$ and $x^i \to x$. In fact, let $h \in D$ and $\epsilon > 0$. Choose N such that $D_h(x^i - x^j) < \epsilon$ if $i, j \ge N$. It follows from this that, we have $||x_n^i - x_n||h_n < \epsilon$ for all n and $i \ge N$. Let $H = D_h(x_N)$. If $||x_n|| \le ||x_n^N||$ then $||x_n||h_n \le H$. If $||x_n|| > ||x_n^N||$ then

$$||x_n|| = ||x_n - x_n^N + x_n^N||h_n \le ||x_n - x_n^N||h_n + ||x_n^N||h_n < \epsilon + H$$

which shows that $L_{\infty}(X, d)$ is complete. The completeness of $C_0(X, d)$ follows from the completeness of $L_{\infty}(X, d)$ and the Proposition 2.1.

THEOREM 2.3 $C_0(X,d) = L_{\infty}(X,d)$ if and only if for each $d = (d_n) \in D$ there exists h =

 $(h_n) \in D$ and a sequence (u_n) of non-negative real numbers such that $u_n \to 0$ and $d_n \leq u_n h_n$ for all n. **PROOF.** Let $x \in L_{\infty}(X, d)$. Given $d = (d_n) \in D$ there exist $h = (h_n) \in D$ and a sequence (u_n) of non-negative real numbers such that $u_n \to 0$ and $d_n \leq u_n h_n$ for all n. Now, for $x \in L_{\infty}(X, d)$, we have

$$d_n ||x_n|| \le u_n h_n ||x_n|| \le u_n D_h(x).$$

This concludes the proof of the theorem with the Proposition 2.1.

LEMMA 2.4 In order for $C_0(X,d) \subset C_0(X,h)$ it is necessary and sufficient that $\liminf_n \frac{d_n}{h_n} > 0$. **PROOF.** Suppose that $\liminf_n \frac{d_n}{h_n} = \alpha > 0$. Then since $d_n > \alpha h_n$ the inclusion $C_0(X,d) \subset C_0(X,h)$ is obvious. Now we suppose $\liminf_n \frac{d_n}{h_n} = 0$. Then there exists a subsequence (n(p)) of (n) such that $h_{n(p)} > pd_{n(p)}$ for p = 1, 2, ... Now define a sequence $x = (x_n)$ by putting $x_{n(p)} = vd_{n(p)}^{-1}p^{-1}$ for p = 1, 2, ... and $x_n = \theta$ otherwise where $v \in X$ and ||v|| = 1. Then we have $x = (x_n) \in C_0(X,d)$ but $x \notin C_0(X,h)$ since $||h_{n(p)}x_{n(p)}|| = ||h_{n(p)}d_{n(p)}^{-1}p^{-1}v|| > 1$. The concludes the proof of the theorem.

LEMMA 2.5 In order for $C_0(X,h) \subset C_0(X,d)$ it is necessary and sufficient that $\limsup_n \frac{d_n}{h_n} < \infty$.

PROOF. Suppose that $\limsup_n \frac{d_n}{h_n} < \infty$. Then there is K > 0 such that $d_n < Kh_n$ for all large values of n. The inclusion $C_0(X,h) \subset C_0(X,d)$ is obvious. Now we suppose $\limsup_n \frac{d_n}{h_n} = \infty$. Then there exists a subsequence (n(p)) of (n) such that $d_{n(p)} > ph_{n(p)}$ for p = 1, 2, ... We define a sequence $x = (x_n)$ by putting $x_{n(p)} = vh_{n(p)}^{-1}p^{-1}$ for p = 1, 2, 3, ... and $x_n = \theta$ otherwise where $v \in X$ and ||v|| = 1. Then we have $x \in C_0(X,h)$ but $x \notin C_0(X,d)$ since $||d_{n(p)}x_{n(p)}|| = ||d_{n(p)}h_{n(p)}^{-1}p^{-1}v|| > 1$. The concludes the proof of the lemma.

Combining Lemma 2.4. and 2.5. we have following theorem.

THEOREM 2.6 $C_0(X,h) = C_0(X,d)$ if and only if $0 < \liminf_n \inf_{h_n} \le \limsup_n \frac{d_n}{h_n} < \infty$.

THEOREM 2.7 Let $\liminf_{n} \frac{d_{n}}{h_{n}} > 0$. The identity mapping of $C_{0}(X, d)$ into $C_{0}(X, h)$ is continuous.

PROOF. Let $\liminf_n \frac{d_n}{h_n} > 0$. Then $C_0(X, d) \subset C_0(X, h)$. There exists $\alpha > 0$ such that $d_n > \alpha h_n$ for all n. Thus for $x \in C_0(X, d)$ we have $\alpha D_h(x) \leq D_d(x)$ Hence the identity mapping is continuous. **3. GENERALIZED KÖTHE-TOEPLITZ DUALS**

Now we determine Köthe-Toeplitz duals in the operator case for the sequence space $C_0(X, d)$. For the more interesting sequence spaces generalized Köthe-Toeplitz duals were determined by Maddox [3]. In the following theorems we suppose in general that (A_n) is a sequence of linear operators A_n mapping a complete seminormed space X into a complete seminormed space Y. Let $(A_n) = (A_1, A_2, ...)$ be a sequence in B(X, Y). Then the group norm of (A_n) is defined by

$$\|(A_n)\| = \sup \|\sum_{n=1}^k A_n x_n\|$$

where the supremum is taken over all $k \in N$ and all $x_n \in S$. This argument was introduced by Robinson[6]. This concept was termed as group norm by Lorentz and Macphail [1]. We start with the proposition given by Maddox [3].

PROPOSITION [M][3] If (A_n) is a sequence in B(X, Y) and we write $R_k = (A_k, A_{k+1}, ...)$ then $\|\sum_{n=k}^{k+p} A_n x_n\| \le \|R_k\|$. max $\{\|x_n\| : k \le n \le k+p\}$, for any x_n and all $k \in N$, and all p > 0 integers.

THEOREM 3.1 Let $(d_n) \in D$. Then $(A_n) \in C_0^{\alpha}(X, d)$ if and only if there exists an integer k such that

- (i) $A_n \in B(X, Y)$ for each $n \ge k$ and
- (ii) $\sum_{n>k} ||A_n|| d_n^{-1} < \infty$.

PROOF. For the sufficiency, let $x = (x_n) \in C_0(X, d)$ and (i), (ii) hold. Then there exists an integer n_1 such that $||x_n||d_n < 2\epsilon$ for all $n \ge n_1$ and there exists an integer $n_2 \ge k$ such that

$$\sum_{n \ge n_2} \|A_n\| d_n^{-1} < \frac{\epsilon}{2}$$

for a given $\epsilon > 0$. Put $H = \max(n_1, n_2)$ so that

$$\sum_{n \ge H} \|A_n x_n\| = \sum_{n \ge H} \|A_n\| \|x_n\| \le \sum_{n \ge H} \|A_n\| 2\epsilon d_n^{-1} < \epsilon,$$

and therefore $(A_n) \in C_0^{\alpha}(X, d)$.

Conversely, suppose that $(A_n) \in C_0^{\alpha}(X, d)$. If (i) does not hold then there exists a strictly increasing sequence (n_i) of natural numbers such that A_{n_i} is not bounded for each i and a sequence (v_n) in S such that $||A_{n_i}v_{n_i}|| > d_{n_i}i$, for each $i \ge 1$. Define the sequence $x = (x_n)$ by putting $x_{n_i} = v_{n_i}d_{n_i}^{-1}i^{-1}$ for each $i \ge 1$ and $x = \theta$ otherwise. We have $x \in C_0(X, d)$ but $||A_{n_i}x_{n_i}|| > 1$ for each $i \ge 1$ and so $\sum_n ||A_nx_n||$ diverges, which gives a contradiction.

Now we suppose $(A_n) \in C_0^{o}(X, d)$ and $\sum_{n \ge k} \|A_n\| d_n^{-1} = \infty$. We choose $k = n_1 < n_2 < n_3 \ldots$ such that $\sum_{n=n_1}^{n_{i+1}-1} \|A_n\| d_n^{-1} > i$ for $i \in N$. Moreover for each $n \ge k$ there exists a sequence (v_n) in S such that $2\|A_nv_n\| \ge \|A_n\|$. Define the sequence $x = (x_n)$ by putting $x_n = v_n d_n^{-1} i^{-1}$ for $n_i \le n \le n_{i+1} - 1$ for $i = 1, 2, \ldots$ and $x_n = \theta$ otherwise so that $x \in C_0(X, d)$ since

$$||x_n||d_n = \frac{||v_n||}{i} \to 0 \text{ as } n \to \infty.$$

Then we have

$$\sum_{n} \|A_{n}x_{n}\| = \sum_{i=1}^{\infty} \sum_{n=n_{i}}^{n_{i+1}-1} \|A_{n}v_{n}d_{n}^{-1}i^{-1}\|$$

$$\geq \frac{1}{2} \sum_{i=1}^{\infty} \sum_{n=n_{i}}^{n_{i+1}-1} \|A_{n}\|d_{n}^{-1}i^{-1}\|$$

$$\geq \frac{1}{2} \sum_{i=1}^{\infty} \|$$

which contradicts our assumption that $\sum_n ||A_n x_n|| < \infty$. This completes the proof.

It is clear that the conditions of the theorem 3.1. are also necessary and sufficient for $(\Lambda_n) \in l^{\alpha}_{\infty}(X,d)$ then we have $C^{\alpha}_0(X,d) = l^{\alpha}_{\infty}(X,d)$.

S. PEHLIVAN

COROLLARY 3.2 ([5]. Theorem 1.) Let $p_n = O(1)$. Then $(A_n) \in C_0^{\alpha}(X, p)$ if and only if there exists an integer k such that condition (i) of Theorem 3.1. holds and

(iii) there exists an integer N > 1 such that $\sum_{n > k} ||A_n|| N^{-\frac{1}{p_n}} < \infty$.

COROLLARY 3.3([3], Proposition 3.4.) $(A_n) \in C_0^{\alpha}(X)$ if and only if there exists an integer k such that condition (i) of Theorem 3.1. holds and

(iv) $\sum_{n=k}^{\infty} \|A_n\| < \infty$.

THEOREM 3.4 Let $(d_n) \in D$. Then $(A_n) \in C_0^{\beta}(X, d)$ if and only if there exists an integer k such that condition (i) of Theorem 3.1. holds and

(v) $||R_k(d)|| = ||(d_k^{-1}A_k, d_{k+1}^{-1}A_{k+1}, \ldots)|| < \infty.$

PROOF. For the sufficiency, let $(x_n) \in C_0(X, d)$ and choose $m_1 > m \ge k$. Then, by the proposition [M] we have for $m \ge k$

$$\|\sum_{n=m}^{m_1} A_n x_n\| = \|\sum_{n=m}^{m_1} d_n^{-1} A_n d_n x_n\| \le \max\{d_n \|x_n\| : m \le n \le m_1\} \|R_k(d)\|.$$

That is $\sum_{n} A_n x_n$ is convergent in Y whence $(A_n) \in C_0^\beta(X, d)$. Conversely (i) can be proved in the way of Theorem 3.1. For the necessity of (v), suppose that $||R_k(d)|| = \infty$ for all $n \ge k$ then there exists a strictly increasing sequence (n_i) of natural numbers such that $v_{n_i} \in S$ and $||\sum_{n=n_i}^{n_{i+1}-1} d_n^{-1} A_n v_n|| > i$ for $i \in N$. Define the sequence $x = (x_n)$ by putting $x_n = v_n d_n^{-1} i^{-1}$ for $n_i \le n \le n_{i+1} - 1$, i = 1, 2, ...and $x_n = \theta$ otherwise. We have $x \in C_0(X, d)$ but for each $i \ge 1$

$$\|\sum_{n=n_1}^{n_{i+1}-1} A_n x_n\| = \|\sum_{n=n_1}^{n_{i+1}-1} A_n v_n d_n^{-1} i^{-1}\| > 1$$

Therefore $\sum_{n} A_n x_n$ diverges, which gives a contradiction. This proves the theorem.

COROLLARY 3.5 ([3], Proposition 3.1.) $d_n = 1$ for all $n, (A_n) \in C_0^\beta(X)$ if and only if condition (i) of Theorem 3.1. holds and $||R_k|| < \infty$.

THEOREM 3.6 Y = C and $f_n \in X^*$ for $n \ge 1$ then $C_0^{\alpha}(X, d) = C_0^{\beta}(X, d) = M_0(X^*, d)$ where $M_0(X^*, d) = \{F = (f_n) : f_n \in X^*, \sum_n ||f_n|| d_n^{-1} < \infty\}.$

PROOF. We show that $C_0^{\beta}(X,d) \subset M_0(X^*,d)$, which is sufficient to prove of the theorem. We suppose $F \notin M_0(X^*,d)$ then there exists a strictly increasing sequence (n_i) and a sequence (v_n) in S such that $||f_n|| < 2|f_n(v_n)|$ and $\sum_{\substack{n=u_i\\n=u_i}}^{n_{i+1}-1} ||f_n|| d_n^{-1} > i$ for $i \in N$. Define the sequence $x = (x_n)$ by putting $x_n = sgn(f_n(v_n))d_n^{-1}i^{-1}v_n$ for $n_i \leq n \leq n_{i+1} - 1$, $i = 1, 2, \ldots$ and $x_n = \theta$ otherwise. Then $x \in C_0(X,d)$ but $\sum_n f_n(x_n) = \sum_{\substack{i=1\\n=u_i}}^{\infty} \sum_{\substack{n=u_i\\n=u_i}}^{n_{i+1}-1} f_n(x_n)$ diverges and so $F \notin C_0^{\beta}(X,d)$. Thus $C_0^{\beta}(X,d) \subset M_0(X^*,d)$ and the proof is complete.

REFERENCES

[1] G.G. Lorentz and M.S. Macphail, "Unbounded operators and a theorem of A. Robinson," *Trans. Royal Soc. of Canada* XLVI(1952), 33-37.

[2] I.J. Maddox, "Matrix maps of bounded sequences in a Banach space," Proc. Amer. Math. Soc. 63(1977), 82-86.

[3] I.J. Maddox, "Infinite Matrices of Operators," *Lecture Notes in Mathematics* Vol. **786**, Springer-Verlag, Berlin, 1980.

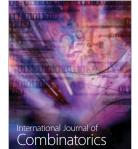
[4] S. Pehlivan, "Certain classes of matrix transformations of X-valued sequences spaces," *TU. Journal of Math.* 11(1987), 119-124.

[5] N. Rath. "Operator duals of some sequence space," Indian J. Pure Appl. Math. 20(1989), 953-963.

[6] A. Robinson, "On functional transformations and summability," *Proc. London Math. Soc.* 52(1950), 132-160.

Advances in **Operations Research**

The Scientific World Journal



Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

