ON X-VALUED SEQUENCE SPACES

S. PEHLIVAN

Department of Mathematics
S.D. University, Isparta, Turkey.
(Received January 11, 1995 and in revised form October 7, 1995)

Abstract

Certain spaces of X-valued sequences are introduced and some of their properties are investigated. Köthc- Toeplitz duals of these spaces are examined.

KEY WORDS AND PHRASES: Seminomed vector space, linear operators, X-valued sequence spaces, dual spaces, infinite matrices.
1991 AMS SUBJECT CLASSIFICATION CODES: $40 \wedge 05,46 \Lambda 45$.

1. INTRODUCTION AND BACKGROUND.

Let c_{0}, c, l_{∞} and s respectively denote the spaces of null sequences, convergent sequences, bourded sequences and all sequences. Let X be a complex linear space with zero elcment θ and $X=(X,\|\cdot\|)$ be a seminormed space. We may define $c_{0}(X)$ the null X-valued sequences, $c(X)$ the convergent. X-valued sequences, $l_{\infty}(X)$ the bounded X-valued sequences and $s(X)$ the vector space of all X valued sequences. If we take $X=C$ ' the set of complex numbers these spaces reduce to the already familiar spaces c_{0}, c, l_{∞} and s respectively. These spaces of X-valued sequences have been studied by Maddox[2,3], Rath[5], Pehlivan[4] and others. We take X and Y to be complete seminormed spaces and $\left(A_{n}\right)$ to be a sequence of linear operators from X into Y. We denote by $B(X, Y)$ the space or bounded linear operators on X into Y. Throughout the paper S denotes the unit ball in X, that is $S=\{x \in X:\|x\| \leq 1\}$ is the closed unit sphere in X.

The α and β-duals of Köthe have been generalized by Robinson [6] who replaced scalar sequences by sequences of linear operators. Accordingly, we define α and β duals of a subspace E of $s(X)$ by

$$
\begin{gathered}
E^{\alpha}=\left\{\left(A_{n}\right): \sum_{n}\left\|A_{n} x_{n}\right\| \text { converges for all } x=\left(x_{n}\right) \in E\right\} \\
E^{\beta}=\left\{\left(A_{n}\right): \sum_{n} A_{n} x_{n} \text { converges in Y. for all } x=\left(x_{n}\right) \in E\right\}
\end{gathered}
$$

Clearly $E^{\alpha} \subset E^{\beta}$ if Y^{\prime} is complete and the inclusion may be strict. X^{*} will denote the continuous duat of X, this is $B(X, C)$.

2. MAIN RESULTS

Before proving the main results we give some definitions. We consider a set D of sequences $\boldsymbol{d}=\left(d_{n}\right)$ of non-negative real numbers with the following propertics:
(i) For each positive integer n there exists $d \in I$ with $d_{n}>0$,
(ii) D is directed in the sense that for $d, h \in D$ there exists $u \in D$ such that $u_{n} \geq d_{n}, h_{n}$ for all n. For $d=\left(d_{n}\right) \in D$ and X a seminormed vector space, we define the following sequcuce spares:

$$
\begin{aligned}
L_{\infty}(X, d) & =\left\{x=\left(x_{n}\right): D_{d}(x)=\sup _{n}\left\|x_{n}\right\| d_{n}<\infty, \quad x_{n} \in X \text { for all } n, \quad d \in D\right\} \\
C_{0}(X, d) & =\left\{x=\left(x_{n}\right): \lim _{n}\left\|x_{n}\right\| d_{n}=0, \quad x_{n} \in X \text { for all } n, \quad d \in D\right\}
\end{aligned}
$$

PROPOSITION $2.1 C_{0}(X, d)$ is a closed subspace of $L_{\infty}(X, d)$.

PROOF. Let $x \in \bar{C}_{0}(X, d)$ and $d=\left(d_{n}\right) \in l$. (iiven $c>0$ there exists $r^{\prime}=\left(x_{n}^{\prime}\right) \in\left({ }_{0}(X, d)\right.$ such that $D_{d}\left(x-x^{\prime}\right)<\frac{c}{2}$. If N is such that $d_{n}\left\|x_{n}^{\prime}\right\|<\frac{c}{2}$ for $n \geq N$, then for $n \geq N$ we have

$$
d_{n}\left\|x_{n}\right\|=d_{n}\left\|x_{n}-x_{n}^{\prime}+x_{n}^{\prime}\right\| \leq d_{n}\left(\left\|x_{n}-x_{n}^{\prime}\right\|+\left\|x_{n}^{\prime}\right\|\right)<
$$

which proves that $x \in C_{0}(\mathbb{X}, d)$.
PROPOSITION 2.2 If X is complete then (${ }_{0}(X, d)$ and $L_{\infty}(X, d)$ are $F K$ spaces.
PROOF. Let X be a complete seminormed space. We show that $L_{\infty}(X, d)$ is complete. Let. $x=\left(x_{n}^{2}\right)$ be a Canchy sequence in $L_{o}(X, d)$. Then $\left\|x_{n}^{2}-x_{n}^{J}\right\| \leq d_{n}^{-1} D_{d}\left(x^{2}-x^{J}\right)$ therefore $\left(x_{n}^{2}\right)$ is Cauchy in X. Let $x_{n}=\lim _{2} x_{n}^{2}$. Now we will show that $x=\left(x_{n}\right) \in L_{\infty}(X, d)$ and $x^{2}-x$. In fact. let $h \in D$ and $\subset>0$. Choose N such that $J_{h}\left(x^{2}-x^{\jmath}\right)<$ (if $i, \jmath \geq N$. It follows from this that, we have $\left\|x_{n}^{2}-x_{n}\right\| h_{n}<\epsilon$ for all n and $\imath \geq N$. Let $H=D_{h}\left(x_{N}\right)$. If $\left\|x_{n}\right\| \leq\left\|x_{n}^{N}\right\|$ then $\left\|x_{n}\right\| h_{n} \leq \|$. If $\left\|x_{n}\right\|>\left\|x_{n}^{N}\right\|$ then

$$
\left\|x_{n}\right\|=\left\|x_{n}-x_{n}^{N}+x_{n}^{N}\right\| h_{n} \leq\left\|x_{n}-x_{n}^{N}\right\| h_{n}+\left\|x_{n}^{N}\right\| h_{n}<c+H
$$

which shows that $L_{\infty}(X, d)$ is complete. The completeness of $C_{0}^{\prime}(X, d)$ follows from the completeness of $L_{\infty}(X, d)$ and the Proposition 2.1.

THEOREM $2.3 C_{0}(X, d)=L_{\infty}(X, d)$ if and only if for each $d=\left(d_{n}\right) \in D$ there exists $h=$ $\left(h_{n}\right) \in D$ and a sequence (u_{n}) of non-negative real numbers such that $u_{n}-0$ and $d_{n} \leq u_{n} h_{n}$ for all n.

PROOF. Let $x \in L_{\infty}(X, d)$. Given $d=\left(d_{n}\right) \in D$ there exist $h=\left(h_{n}\right) \in D$ and a sequence (u_{n}) of non-negative real numbers such that $u_{n} \rightarrow 0$ and $d_{n} \leq u_{n} h_{n}$ for all n. Now, for $x \in L_{\infty}(X, d)$, we have

$$
d_{n}\left\|x_{n}\right\| \leq u_{n} h_{n}\left\|x_{n}\right\| \leq u_{n} D_{h}(x) .
$$

This concludes the proof of the theorem with the Proposition 2.1.
LEMMA 2.4 In order for $C_{0}(X, d) \subset C_{0}(X, h)$ it is necessary and sufficient that $\lim \operatorname{in} f_{n} \frac{d_{n}}{h_{n}}>0$.
PROOF. Suppose that $\lim \inf _{n} \frac{d_{n}}{h_{n}}=\alpha>0$. Then since $d_{n}>\alpha h_{n}$ the inclusion $C_{0}(X, d) \subset$ $C_{0}(X, h)$ is obvious. Now we suppose $\liminf f_{n} \frac{d_{n}}{h_{n}}=0$. Then there exists a subsequence $(n(p))$ of (n) such that $h_{n(p)}>p d_{n(p)}$ for $p=1,2 \ldots$. Now define a sequence $x=\left(x_{n}\right)$ by putting $x_{n(p)}=v d_{n(r)}^{-1} p^{-1}$ for $p=1,2, \ldots$ and $x_{n}=\theta$ otherwise where $v \in X$ and $\|v\|=1$. Then we have $x=\left(x_{n}\right) \in C_{0}(X, d)$ but $x \notin C_{0}(X, h)$ since $\left\|h_{n(p)} x_{n(p)}\right\|=\left\|h_{n(p)} d_{n(p)}^{-1} p^{-1} v\right\|>1$. The concludes the proof of the theorem.

LEMMA 2.5 In order for $C_{0}(X, h) \subset C_{0}^{\prime}(X, d)$ it is necessary and suflicient that limsup ${ }_{n} \frac{d_{n}}{h_{n}}<\infty$.
PROOF. Suppose that $\limsup _{n} \frac{d_{n}}{h_{n}}<\infty$. Then there is $\boldsymbol{K}>0$ such that $d_{n}<\boldsymbol{K} h_{n}$ for all large values of n. The inclusion $C_{0}(X, h) \subset C_{0}(X, d)$ is obvious. Now we suppose limsup $p_{n} \frac{d_{n}}{h_{n}}=\infty$. Then there exists a subsequence $(n(p))$ of (n) such that $d_{n(p)}>p h_{n(p)}$ for $p=1,2, \ldots$. We define a sequence $x=\left(x_{n}\right)$ by putting $x_{n(p)}=v h_{n(p)}^{-1} p^{-1}$ for $p=1,2,3, \ldots$ and $x_{n}=\theta$ otherwise where $v \in X$ and $\|v\|=1$. Then we have $x \in C_{0}^{\prime}(X, h)$ but $x \notin C_{0}(X, d)$ since $\left\|d_{n(p)} x_{n(p)}\right\|=\left\|d_{n(p)} h_{n(p)}^{-1} p^{-1} v\right\|>1$. The concludes the proof of the lemma.

Combining Lemma 2.4. and 2.5. we have following theorem.
THEOREM $2.6 C_{0}^{\prime}(X, h)=C_{0}^{\prime}(X, d)$ if and only if $0<\liminf f_{n} \frac{d_{n}}{h_{n}} \leq \lim \sup _{n} \frac{d_{n}}{h_{n}}<\infty$.
THEOREM 2.7 Let $\liminf _{n} \frac{d_{n}}{h_{n}}>0$. The identity mapping of $C_{0}(X, d)$ into $C_{0}(X, h)$ is continyous.

PROOF. Let $\liminf \inf _{n} \frac{d_{n}}{h_{n}}>0$. Then $C_{0}^{\prime}(X, d) \subset C_{0}(X, h)$. There exists $\alpha>0$ such that $d_{n}>\alpha h_{n}$ for all n. Thus for $x \in C_{0}(X, d)$ we have $\alpha D_{h}(x) \leq D_{d}(x)$ Hence the identity mapping is continuous.

3. GENERALIZED KÖTHE-TOEPLITZ DUALS

Now we determine Köthe-Toeplitz duals in the operator case for the sequence spare $C_{0}(X, d)$. For the more interesting sequence spaces generalized Köthe-Toeplitz duals were determined by Maddox [3]. In the following theorems we suppose in general that (A_{n}) is a sequence of linear operators Λ_{n} mapping
a complete seminormed space X into a complete seminormed space Y. Let $\left(\Lambda_{n}\right)=\left(\Lambda_{1}, \lambda_{2} \ldots\right.$ be a sequence in $B(X, Y)$. Then the group norm of $\left(A_{n}\right)$ is defined by

$$
\left\|\left(\Lambda_{n}\right)\right\|=\sup \left\|\sum_{n=1}^{k} \Lambda_{n} x_{n}\right\|
$$

where the supremum is taken over all $k \in N$ and all $x_{n} \in S$. This argument was introduced by Robinson[6]. This concept was termed as group norm by Lorentz, and Macphail [1]. We start with the proposition given by Maddox [3].

PROPOSITION [M][3] If $\left(\Lambda_{n}\right)$ is a sequence in $B(X, Y)$ and we write $R_{k}=\left(\Lambda_{k}, \Lambda_{k+1}, \ldots\right)$ then $\left\|\sum_{n=k}^{k+p} A_{n} x_{n}\right\| \leq\left\|R_{k}\right\| \cdot \max \left\{\left\|x_{n}\right\|: k \leq n \leq k+p\right\}$, for any x_{n} and all $k \in N$, and all $p>0$ integers.

THEOREM 3.1 Let $\left(d_{n}\right) \in D$. Then $\left(A_{n}\right) \in C_{0}^{\alpha}(X, d)$ if and only if there exists an integer k such that
(i) $A_{n} \in B(X, Y)$ for earh $n \geq k$ and
(ii) $\sum_{n \geq k}\left\|A_{n}\right\| d_{n}^{-1}<\infty$.

PROOF. For the sufficiency, let $x=\left(x_{n}\right) \in C_{0}^{\prime}(X, d)$ and (i), (ii) hold. Then there exists an integer n_{1} such that $\left\|x_{n}\right\| d_{n}<2$ f for all $n \geq n_{1}$ and there exists an integer $n_{2} \geq k$ such that

$$
\sum_{n \geq n_{2}}\left\|\Lambda_{n}\right\| d_{n}^{-1}<\frac{c}{2}
$$

for a given $c>0$. Put $H=\max \left(n_{1}, n_{2}\right)$ so that

$$
\sum_{n \geq H}\left\|A_{n} x_{n}\right\|=\sum_{n \geq H}\left\|A_{n}\right\|\left\|x_{n}\right\| \leq \sum_{n \geq H}\left\|A_{n}\right\| 2 \epsilon d_{n}^{-1}<\epsilon,
$$

and therefore $\left(\Lambda_{n}\right) \in C_{0}^{\prime \alpha}(X, d)$.
Conversely, suppose that $\left(A_{n}\right) \in C_{0}^{\alpha}(X, d)$. If (i) does not hold then there exists a strictly increasing sequence (n_{i}) of natural numbers such that Λ_{n} is not bounded for each i and a sequence (v_{n}) in S such that $\left\|A_{n_{1}} v_{n_{1}}\right\|>d_{n_{1}} i, \quad$ for each $i \geq 1$. Define the sequence $x=\left(x_{n}\right)$ by putting $x_{n_{1}}=v_{n_{1}} d_{n_{1}}^{-1,-1}$ for each $i \geq 1$ and $x=\theta$ otherwise. We have $x \in C_{0}^{\prime}(X, d)$ but $\left\|A_{n_{1}} x_{n_{1}}\right\|>1$ for each $i \geq 1$ and so $\sum_{n}\left\|A_{n} x_{n}\right\|$ diverges. which gives a contradiction.

Now we suppose $\left(A_{n}\right) \in C_{0}^{\alpha}(X, d)$ and $\sum_{n \geq k}\left\|\Lambda_{n}\right\| d_{n}^{-1}=\infty$. We choose $k=n_{1}<n_{2}<n_{3} \ldots$ such that $\sum_{n=n_{1}}^{n_{t}+1}\left\|A_{n}\right\| d_{n}^{-1}>i$ for $i \in N$. Moreover for each $n \geq k$ there exists a sequence (v_{n}) in S such that $2\left\|A_{n} v_{n}\right\| \geq\left\|A_{n}\right\|$. Define the sequence $x=\left(x_{n}\right)$ by putting $x_{n}=v_{n} d_{n}^{-1} i^{-1}$ for $n_{i} \leq n \leq n_{n+1}-1$ for $i=1,2, \ldots$ and $x_{n}=\theta$ otherwise so that $x \in C_{0}(X, d)$ since

$$
\left\|x_{n}\right\| d_{n}=\frac{\left\|v_{n}\right\|}{i} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Then we have

$$
\begin{aligned}
\sum_{n}\left\|A_{n} x_{n}\right\| & =\sum_{i=1}^{\infty} \sum_{n=n_{2}}^{n_{i}+1-1}\left\|A_{n} v_{n} d_{n}^{-1} i^{-1}\right\| \\
& \geq \frac{1}{2} \sum_{i=1}^{\infty} \sum_{n=n_{2}}^{n_{i}+1-1}\left\|A_{n}\right\| d_{n}^{-1} i^{-1} \\
& \geq \frac{1}{2} \sum_{i=1}^{\infty} 1
\end{aligned}
$$

which contradicts our assumption that $\sum_{n}\left\|A_{n} x_{n}\right\|<\infty$. This completes the proof.
It is clear that the conditions of the theorem 3.1. are also necessary and sufficient for $\left(\Lambda_{n}\right) \in$ $l_{\infty}^{\alpha}(X, d)$ then we have $C_{0}^{\alpha}(X, d)=l_{\infty}^{\alpha}(X, d)$.

COROLLARY 3.2 ([5].Theorem 1.) Let $p_{n}=O(1)$. Then $\left(\Lambda_{n}\right) \in C_{0}^{?}(X, p)$ if and only if there exists an integer k such that condition (i) of Theorem 3.1. holds and
(iii)there exists an integer $N>1$ such that $\sum_{n \geq k}\left\|A_{n}\right\| N^{-\frac{1}{n, n}}<\infty$.

COROLLARY 3.3([3]. Proposition 3.4.) $\left(A_{n}\right) \in \mathcal{C}_{0}^{\circ}(\mathcal{X})$ if and only if there exists an integer l such that condition (i) of Theorm 3.1. holds and
(iv) $\sum_{n=k}^{\infty}\left\|\lambda_{n}\right\|<\infty$.

THEOREM 3.4 Let $\left.\left(d_{n}\right) \in I\right)$. Then $\left(\Lambda_{n}\right) \in C_{0}^{\prime / \beta}(X, d)$ if and only if there exist.s an integer k such that condition (i) of Theorem 3.1. holds and
(v) $\left\|R_{k}(d)\right\|=\left\|\left(d_{k}^{-1} A_{k}, d_{k+1}^{-1} A_{k+1}, \ldots\right)\right\|<\infty$.

PROOF. For the sufficiency, Int $\left(x_{n}\right) \in C_{0}(X, d)$ and choose $m_{1}>m \geq k$. Then, by the proposition [M] we have for $m \geq k$

$$
\left\|\sum_{n=m}^{m_{1}} A_{n} x_{n}\right\|=\left\|\sum_{n=m}^{m_{1}} d_{n}^{-1} A_{n} d_{n} x_{n}\right\| \leq \max \left\{d_{n}\left\|x_{n}\right\|: m \leq n \leq m_{1}\right\}\left\|R_{k}(d)\right\|
$$

That is $\sum_{n} A_{n} x_{n}$ is convergent in Y whence $\left(A_{n}\right) \in C_{0}^{\beta}(X, d)$. Conversely (i) can be proved in the way of Theorem 3.1. For the necessity of (v), suppose that $\left\|R_{k}(d)\right\|=\infty$ for all $n \geq k$ then there exists a strictly increasing sequence (n_{i}) of natural numbers such that $v_{n_{1}} \in S$ and $\left\|\sum_{n=n_{1}}^{n_{1}+1-1} d_{n}^{-1} \Lambda_{n} v_{n}\right\|>$ i for $i \in N$. Define the sequence $x=\left(x_{n}\right)$ by putting $x_{n}=v_{n} d_{n}^{-1} i^{-1}$ for $n_{i} \leq n \leq n_{i+1}-1, \quad \imath=1,2, \ldots$ and $x_{n}=\theta$ otherwise. We have $x \in C_{0}^{\prime}(X, d)$ but for each $i \geq 1$

$$
\left\|\sum_{n=n_{2}}^{n_{i}+1-1} \Lambda_{n} x_{n}\right\|=\left\|\sum_{n=n_{1}}^{n_{+}+1-1} \Lambda_{n} v_{n} d_{n}^{-1, i^{-1}}\right\|>1
$$

Therefore $\sum_{n} A_{n} x_{n}$ diverges, which gives a contradiction. This proves the theorem.
COROLLARY 3.5 ([3],Proposition 3.1.) $d_{n}=1$ for all $n,\left(A_{n}\right) \in C_{0}^{+\beta}(X)$ if and only if condition (i) of Theorem 3.1. holds and $\left\|R_{k}\right\|<\infty$.

THEOREM 3.6 $Y=C$ and $f_{n} \in X^{*}$ for $n \geq 1$ then $C_{0}^{\sim}(X, d)=C_{0}^{\beta}(X, d)=M_{0}\left(X^{*}, d\right)$ where $M_{0}\left(X^{*}, d\right)=\left\{F=\left(f_{n}\right): f_{n} \in X^{*}, \sum_{n}\left\|f_{n}\right\| d_{n}^{-1}<\infty\right\}$.

PROOF. We show that $C_{0}^{\prime \beta}(X, d) \subset M_{0}\left(X^{*}, d\right)$, which is sufficient to prove of the theorem. We suppose $F \notin M_{0}\left(X^{*}, d\right)$ then there exists a strictly increasing sequence (n_{t}) and a sequence $\left(v_{n}\right)$ in S such that $\left\|f_{n}\right\|<2\left|f_{n}\left(v_{n}\right)\right|$ and $\sum_{n=n_{1}}^{n_{1}+1}\left\|f_{n}\right\| d_{n}^{-1}>i$ for $i \in N$. Define the sequence $x=\left(x_{n}\right)$ by putting $x_{n}=\operatorname{sgn}\left(f_{n}\left(v_{n}\right)\right) d_{n}^{-1} i^{-1} v_{n}$ for $n_{2} \leq n \leq n_{\imath+1}-1, \quad i=1,2, \ldots$ and $x_{n}=\theta$ otherwise. Then $x \in C_{0}^{\prime}(X, d)$ but $\sum_{n} f_{n}\left(x_{n}\right)=\sum_{i=1}^{\infty} \sum_{n=n_{1}}^{n_{1}+1-1} f_{n}\left(x_{n}\right)$ diverges and so $F \notin C_{0}^{\beta}(X, d)$. Thus $C_{0}^{\beta}(X, d) \subset M_{0}\left(X^{*}, d\right)$ and the proof is completr.

REFERENCES

[1] G.G. Lorentz and M.S. Macphail, "Unbounded operators and a theorem of A. Robinson," Tians. Royal Soc. of Canada XLVI(19.52), 33-37.
[2] I.J. Maddox, "Matrix maps of bounded sequences in a Banach space," Pror. Amer. Math. Sor. 63(1977), 82-86.
[3] 1.J. Maddox, "Infinite Matrices of Operators," Lechury Notrs m Mathematirs Vol. 786, SpingerVerlag, Berlin. 1980.
[4] S. Pehlivan, "Certain classes of matrix transformations of X-valued sequences spaces," TVI. Journal of Math. 11(1987), 119-124.
[5] N. Rath. "Operator duals of some sequence space," Indzan J. Pure Appl. Math. 20(1989), 953-963.
[6] A. Robinson, "On functional transformations and summability," Proc. London Math. Sor. 52(1950), 132-160.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

