ON STRICT AND SIMPLE TYPE EXTENSIONS

MOHAN TIKOO

Department of Mathematics
Southeast Missouri State University
Cape Girardeau, Missouri 63701 U.S.A.

(Received August 14, 1996 and in revised form November 21, 1996)

ABSTRACT. Let \((Y, \tau)\) be an extension of a space \((X, \tau')\). \(p \in Y\), let \(\mathcal{O}_p^\tau = \{W \cap X : W \in \tau, p \in W\}\). For \(U \in \tau'\), let \(o(U) = \{p \in Y : U \cap Y, p \in W\}\). In 1964, Banaschewski introduced the strict extension \(Y^\#\), and the simple extension \(Y^+\) of \(X\) (induced by \((Y, \tau)\)) having base \(\{o(U) : U \in \tau'\}\) and \(\{W : p \in Y, U \in \mathcal{O}_p^\tau\}\), respectively. The extensions \(Y^\#\) and \(Y^+\) have been extensively used since then. In this paper, the open filters \(\mathcal{L}^\tau = \{W \in \tau : \text{int}_X \text{cl}_X(U) \subseteq \text{int}_X \text{cl}_X(W)\}\) for some \(U \in \mathcal{O}_p^\tau\), and \(U^\tau = \{W \in \tau : \text{int}_X \text{cl}_X(W) \in \mathcal{O}_p^\tau\}\) are used to define some new topologies on \(Y\). Some of these topologies produce nice extensions of \((X, \tau')\). We study some interrelationships of these extensions with \(Y^\#\), and \(Y^+\) respectively.

KEY WORDS AND PHRASES: Extension, simple extension, strict extension, H-closed, s-closed, almost realcompact, near compact.

1980 AMS SUBJECT CLASSIFICATION CODES: Primary 54D25.

1. INTRODUCTION

A topological space \(Y\) is an extension of a space \(X\) if \(X\) is a dense subspace of \(Y\). If \(Y_1\) and \(Y_2\) are two extensions of a space \(X\), then \(Y_2\) is said to be projectively larger than \(Y_1\), written \(Y_2 \geq Y_1\) (or \(Y_1 \leq Y_2\)), provided that there exists a continuous map \(f : Y_2 \to Y_1\) such that \(f|_X = i_X\), the identity map on \(X\). Two extensions \(Y_1\) and \(Y_2\) of \(X\) are called equivalent if \(Y_1 \leq Y_2\) and \(Y_2 \leq Y_1\). We shall identify two equivalent extensions of \(X\). With this convention, the class \(E(X)\) of all the Hausdorff extensions of a Hausdorff space \(X\) is a set. Let \((Y, \tau) \in E(X)\) and let \(p \in Y\). If \(N_p\) is the open neighborhood filter of \(p\) in \(Y\), the set \(\mathcal{O}_p^\tau = \{N \cap X : N \in N_p\}\) (called the trace of \(N_p\) on \(X\)) is an open filter on \(X\). If \(U\) is open in \(X\), denote \(o_U(U) = \{p \in Y : U \in \mathcal{O}_p^\tau\}\).
In 1964 Banaschewski [1] introduced the extensions \(Y^* \) (resp. \(Y^+ \)) the strict extension (resp. the simple extension) of \(X \) induced by \(Y \) satisfying \(Y^* \leq Y \leq Y^+ \). The topology \(\tau^* \) on \(Y^* \) (resp. \(\tau^+ \) on \(Y^+ \)) has for an open base the collection \(\{ o, (U): U \text{ open in } X \} \) (resp., the collection \(\{ U \cup \{ p \}: p \in Y, \text{ and } U \in \mathcal{F}_p \} \)). The extensions \(Y^* \) and \(Y^+ \) have been studied extensively and have proved extremely useful regarding some properties weaker than compactness, such as nearly compact, almost realcompact, feebly compact, \(H \)-closed, \(s \)-closed, etc. In this paper we introduce new extensions \(Y', Y'', Y'^*, \) and \(Y'^* \), study some of their properties, and compare them with \(Y, Y^*, \) and \(Y^+ \). All spaces under consideration are Hausdorff.

2. THE EXTENSIONS \(Y' \) AND \(Y'' \).

In this section, we introduce several topologies on \(Y \), and compare them with \(\tau \). Some of these topologies yield interesting extensions of \((X, \tau') \).

DEFINITION 2.1. Let \((Y, \tau)\) be an extension of a space \((X, \tau')\). For \(p \in Y \) define

\[
U^p = \{ W: W \in \tau', \text{int}_x \text{cl}_x W \in \mathcal{F}_p \}, \tag{2.1}
\]

\[
\mathcal{L}^p = \{ W: W \in \tau', W \supseteq \text{int}_x \text{cl}_x U \text{ for some } U \in \mathcal{F}_p \}. \tag{2.2}
\]

LEMMA 2.1.

(a) Both \(U^p \) and \(\mathcal{L}^p \) are open filters on \(X \) such that \(\mathcal{L}^p \subseteq \mathcal{F}_p \subseteq U^p \).

(b) \(U^p = \{ W: W \in \tau', \text{int}_x \text{cl}_x W \in \mathcal{L}^p \} = \cap \{ \mathcal{L}^p: \text{ an open ultrafilter on } X, \mathcal{F}_p \subseteq \mathcal{L}^p \} \)

PROOF. We prove (b). Let \(\mathcal{U} = \{ W: W \in \tau', \text{int}_x \text{cl}_x W \in \mathcal{L}^p \} \). If \(W \in \mathcal{U} \), then \(W \in \tau' \) and \(\text{int}_x \text{cl}_x W \supseteq \text{int}_x \text{cl}_x U \) for some \(U \in \mathcal{F}_p \). Therefore, \(\text{int}_x \text{cl}_x W \in \mathcal{F}_p \), whence \(W \in U^p \). Thus, \(\mathcal{U} \subseteq U^p \).

To prove the reverse inequality, let \(W \in U^p \). Then \(\text{int}_x \text{cl}_x W \in \mathcal{F}_p \). Since \(\text{int}_x \text{cl}_x W \supseteq \text{int}_x \text{cl}_x (\text{int}_x \text{cl}_x W) \) it follows that \(\text{int}_x \text{cl}_x W \in \mathcal{L}^p \). Hence \(W \in \mathcal{U} \). This proves the first equality in (b). The second equality follows from [9], completing the proof of the lemma.

REMARK 2.1. Since \(\mathcal{F}_p = \mathcal{F}_p^* = \mathcal{F}_p + [9,10,11] \), it follows that each one of \(Y, Y' \) and \(Y'' \) yield the same \(\mathcal{L}^p \) (resp., \(U^p \)) for all \(p \in Y \). Moreover, if \(Z \in E(X) \) has the same underlying set as \(Y \), and is such that \(Y^* \leq Z \leq Y^+ \), then \(Y \) and \(Z \) induce the same \(\mathcal{L}^p \) (resp., \(U^p \)) for all \(p \in Y \). Also, if \(p \neq q \) are distinct elements of \(Y \) then \(\mathcal{L}^p \neq \mathcal{L}^q \) and \(U^p \neq U^q \). Obviously, if \(U \in \mathcal{F}_p \), then \(\text{int}_x \text{cl}_x (U) \in \mathcal{L}^p \). Moreover, \(U \in U^p \) if and only if \(\text{int}_x \text{cl}_x (U) \in \mathcal{F}_p \).

DEFINITION 2.2. Let \((Y, \tau)\) be an extension of \((X, \tau')\). For \(G \in \tau' \), define

\[
\alpha(G) = G \cup \{ p: p \in Y \setminus X, G \in \mathcal{L}^p \} \tag{2.3}
\]
\[
oalign{\smallskip}
o_{\ast}(G) = G \cup \{ p \in Y \setminus X, G \in U \}
\]
\hspace{1.25em} \text{(2.4)}

\[
o_{\ast}(G) = \{ p \in Y : G \in U \}
\]
\hspace{1.25em} \text{(2.5)}

\[
o_{\ast}(G) = \{ p \in Y : G \in U \}
\]
\hspace{1.25em} \text{(2.6)}

The proof of the Propositions 2.1, and 2.2 is straightforward.

Proposition 2.1. Let \((Y, \tau)\) be an extension of \((X, \tau')\). Then for all \(U, V \in \tau'\)

(a) \(\alpha(\emptyset) = \emptyset, \alpha(X) = Y\),
(b) \(\alpha(U \cap X) = U\),
(c) \(\alpha(U \cap V) = \alpha(U) \cap \alpha(V)\),
(d) The family \(\{\alpha(G) : G \in \tau'\}\) is an open base for a Hausdorff topology \(\tau_i\) on \(Y\) and \((Y, \tau_i)\) is an extension of \(X\).

Proposition 2.2. Let \((Y, \tau)\) be an extension of \((X, \tau')\). Then for all \(U, V \in \tau'\),

(a) \(\alpha(\emptyset) = \emptyset\) and \(\alpha(X) = Y\),
(b) \(\alpha(U \cap X) = U\),
(c) \(\alpha(U \cap V) = \alpha(U) \cap \alpha(V)\),
(d) The family \(\{\alpha(G) : G \in \tau'\}\) is an open base for a Hausdorff topology \(\tau_u\) on \(Y\) and \((Y, \tau_u)\) is an extension of \(X\).

Proposition 2.3. Let \((Y, \tau)\) be an extension of \((X, \tau')\). Then for all \(U, V \in \tau'\),

(a) \(\alpha(\emptyset) = \emptyset, \alpha(X) = Y\),
(b) \(\alpha(U \cap X) \subseteq U\),
(c) \(\alpha(U \cap V) = \alpha(U) \cap \alpha(V)\),
(d) \(\alpha(U) = \cup \{ W : W \in \tau \text{ and } \text{int}_X \text{cl}_X(W \cap X) \subseteq U \}\)
(e) The family \(\{\alpha(G) : G \in \tau'\}\) is an open base for a coarser Hausdorff topology \(\tau_{\text{ul}}\) on \(Y\), \(X\) is dense in \((Y, \tau_{\text{ul}})\), but \((Y, \tau_{\text{ul}})\) may not be an extension of \(X\).

Proof. We prove (d). The rest is straightforward. Let \(p \in \alpha(U)\). Then \(U \in \mathcal{U}\). Therefore, \(U \supseteq \text{int}_X \text{cl}_X V\) for some \(V \in \mathcal{V}\). Therefore, there exists \(W \in \tau\) such that \(p \in W\) and \(W \cap X = V\). It follows that \(\text{int}_X \text{cl}_X(W \cap X) \subseteq U\). Conversely, if \(W \in \tau\) is such that \(\text{int}_X \text{cl}_X(W \cap X) \subseteq U\) and \(p \in W\), then \(W \cap X \in \mathcal{V}\). So, \(\text{int}_X \text{cl}_X(W \cap X) \in \mathcal{U}\). This implies that \(U \in \mathcal{U}\) and hence \(p \in \alpha(U)\). The proof of the proposition is now complete.

Proposition 2.4. Let \((Y, \tau)\) be an extension of \((X, \tau')\). Then for all \(U, V \in \tau'\),

(a) \(\alpha(\emptyset) = \emptyset\) and \(\alpha(X) = Y\),
(b) \(a_\circ(U) \cap X = \text{int}_x \text{cl}_x(U) \),

(c) \(a_\circ(U \cap V) = a_\circ(U) \cap a_\circ(V) \),

(d) \(a_\circ(U) = \cup \{ W : W \in \tau \text{ and } W \cap X \subseteq \text{int}_x \text{cl}_x(U) \} \)

(e) The family \(\{ a_\circ(G) : G \in \tau' \} \) is an open base for a coarser Hausdorff topology \(\tau_\circ \) on \(X \), \(X \) is dense in \((Y, \tau_\circ) \), but \((Y, \tau_\circ) \) may not be an extension of \(X \).

PROOF. We prove (d). The rest is straightforward. Let \(p \in a_\circ(U) \). Then \(U \subseteq U' \). Therefore, \(\text{int}_x \text{cl}_x U \subseteq U' \). It follows that there exists \(W \in \tau \) such that \(p \in W \) and \(W \cap X \subseteq \text{int}_x \text{cl}_x U \).

Conversely, if \(W \in \tau \) is such that \(W \cap X \subseteq \text{int}_x \text{cl}_x U \) and \(p \in W \), then \(W \cap X \subseteq U' \). So, \(\text{int}_x \text{cl}_x U \subseteq U' \). Therefore, \(U \subseteq U' \) and \(p \in a_\circ(U) \).

DEFINITION 2.3. The spaces \((Y, \tau_\circ), (Y, \tau_\circ'), (Y, \tau_\circ^\circ), \) and \((Y, \tau_\circ^\circ)\) described in propositions 2.1-2.4 will, henceforth, be denoted by \(Y', Y^\circ, Y'^\circ, \) and \(Y^\circ' \) respectively. If \(A \subseteq Y \), then \(\text{int}_\tau(A) \) (resp. \(\text{cl}_\tau(A) \)) will be denoted by \(\text{int}_\tau(A) \) (resp., \(\text{cl}_\tau(A) \)). Likewise, \(\text{int}_\tau(A), \text{cl}_\tau(A), \text{int}_\tau(A), \text{cl}_\tau(A), \text{int}_\tau(A) \) and \(\text{cl}_\tau(A) \) are defined in an analogous manner.

LEMMA 2.2. If \(U \in \tau' \), then

(a) \(a_\circ(U) \subseteq o_\circ(U) \subseteq o_\tau(U) \subseteq a_\circ(\text{int}_x \text{cl}_x U) = a_\circ(U) \cap X = a_\circ(\text{int}_x \text{cl}_x U) \),

(b) \(a_\circ(U) \cap X = o_\circ(U) \cap X \), and \(a_\circ(U) \cap X = o_\tau(U) \cap X \)

(c) \(o_\circ(\text{int}_x \text{cl}_x U) \cap X = a_\circ(U) \cap X \), and

(d) if \(U \) is regular open (i.e. \(U \subseteq \text{int}_x \text{cl}_x U \)), then \(a_\circ(U) = a_\circ(U) \), and the equality holds in (a).

PROOF. Part (a): We show that \(o_\circ(\text{int}_x \text{cl}_x U) = a_\circ(U) \), the rest being straightforward. Certainly, \(o_\circ(\text{int}_x \text{cl}_x U) \cap X = \text{int}_x \text{cl}_x U = a_\circ(U) \cap X \). Let \(p \in o_\circ(\text{int}_x \text{cl}_x U) \cap X \). Then \(\text{int}_x \text{cl}_x U \subseteq U' \). Therefore, \(U \subseteq U' \), and \(p \in a_\circ(U) \cap X \). Conversely, let \(p \in a_\circ(U) \cap X \). Then, \(U \subseteq U' \). So, \(p \in o_\circ(U) \cap X \subseteq o_\circ(\text{int}_x \text{cl}_x U) \cap X \). The above arguments prove (a).

To prove (c), let \(q \in o_\circ(\text{int}_x \text{cl}_x G) \cap X \). Then, \(\text{int}_x \text{cl}_x G \subseteq U' \). Therefore, \(q \in o_\circ(G) \cap X \). Thus, \(o_\circ(\text{int}_x \text{cl}_x G) \cap X = o_\circ(G) \cap X \). To prove the reverse inequality, let \(q \in o_\circ(G) \cap X \). Then, \(G \subseteq U' \). Therefore, \(q \in o_\circ(\text{int}_x \text{cl}_x G) \cap X \) and \(o_\circ(G) \cap X \subseteq o_\circ(\text{int}_x \text{cl}_x G) \cap X \). Hence, \(o_\circ(\text{int}_x \text{cl}_x G) \cap X = o_\circ(G) \cap X \). The rest of the lemma is straightforward.

Given a space \((X, \tau')\), the family \(\{ \text{int}_x \text{cl}_x U : U \in \tau' \} \) forms an open base for a coarser Hausdorff topology \(\tau'_1 \) on \(X \). The space \(X' = (X, \tau'_1) \) is called the *semiregularization* of \(X \). A space \((X, \tau')\) is called *semiregular* if \((X, \tau') = X\).

THEOREM 2.1. If \(X \) is semiregular, and \((Y, \tau)\) (not necessarily semiregular) is an extension of \(X \), then \(Y' \) is an extension of \(X \) such that \(Y' \subseteq Y \).

PROOF. If \(X \) is semiregular, then \(o_\circ(U) = a_\circ(U) \) for all \(U \in \tau' \). Hence, \(Y' \) is an extension of \(X \) such that \(Y' \subseteq Y' \subseteq Y \).
THEOREM 2.2. The spaces Y' and Y'' are homeomorphic.

PROOF. For all $U \in \tau'$, $a_\tau(\text{int}_x \text{cl}_y U) = a_\tau(\text{int}_x \text{cl}_y U) = a_\tau(U)$ implies that $\tau' \subseteq \tau''$. Also, if $G \in \tau'$ and $p \in a_\tau(G)$, then $G \supseteq \text{int}_x \text{cl}_y U$ for some $U \in \tau_y \subseteq \tau''$. Now, if $q \in a_\tau(U)$, then $\text{int}_x \text{cl}_y U \in \tau''$ which implies that $G \in \tau''$, or $q \in a_\tau(G)$. Therefore, $p \in a_\tau(U) \subseteq a_\tau(G)$. Hence, $\tau' \subseteq \tau''$. This proves the theorem.

LEMMA 2.3. Let (Y, τ) be an extension of (X, τ'). Then, for all $G \in \tau'$ the following are true.

(a) $\text{cl}_\tau(G) \subseteq \text{cl}_\tau(\text{int}_x \text{cl}_y(G))$
(b) $\text{cl}_\tau(G) = \text{cl}_\tau(\text{int}_x \text{cl}(G))$
(c) $\text{cl}_\tau(G) = \text{cl}_\tau(G)$
(d) $\text{cl}_\tau(G) = \text{cl}_\tau(G) = \text{cl}_\tau(\text{int}_x \text{cl}(G))$, and
(e) $\text{cl}_\tau(\text{int}_x(G)) = \text{cl}_\tau(\text{int}_x \text{cl}(G))$

PROOF. Part (a): Let $p \in \text{cl}_\tau(G)$, and let $o_\tau(U)$ be a basic open neighborhood of p in Y. If $G \subseteq o_\tau(U) \cap X$, then $p \in U \subseteq \text{int}_x \text{cl}_y U \subseteq \tau''$. Therefore, $a_\tau(\text{int}_x \text{cl}_y U)$ is an open neighborhood of p in Y''. Consequently, $a_\tau(\text{int}_x \text{cl}_y U) \cap G \neq \emptyset$. By Proposition (2.7) (b), $\text{int}_x \text{cl}_y U \cap G \neq \emptyset$. Hence $U \cap G \neq \emptyset$. This in turn implies that $o_\tau(U) \cap G \neq \emptyset$, and $p \in \text{cl}_\tau(G)$. If $p \in o_\tau(U) \setminus X$, then $U \in \tau''$. Now, $a_\tau(G)$ is an open neighborhood of p in Y''. Consequently, $a_\tau(U) \cap G \neq \emptyset$. Therefore, $o_\tau(U) \cap G \neq \emptyset$ whence $p \in \text{cl}_\tau(G)$.

Part (b): Let $p \in \text{cl}_\tau(G)$, and let $o_\tau(U)$ be a basic open neighborhood of p in Y. Since $o_\tau(U) \subseteq a_\tau(G)$, $a_\tau(U)$ is an open neighborhood of p in Y''. Hence, $a_\tau(U) \cap G \neq \emptyset$. Therefore, $\text{int}_x \text{cl}_y U \cap G \neq \emptyset$, whence $U \cap G \neq \emptyset$. Consequently, $a_\tau(U) \cap G \neq \emptyset$. Therefore, $p \in \text{cl}_\tau(G)$. The other half of (b) is straightforward.

The proof of (c) is straightforward.

Part (d): Let $p \in \text{cl}_\tau(G)$, and let W be an open neighborhood of p in Y. Then, $W \cap X \in \tau_y \subseteq \tau''$ shows that $o_\tau(W \cap X)$ is an open neighborhood of p in Y''. Therefore, $a_\tau(W \cap X) \neq \emptyset$. This shows that $W \cap G \neq \emptyset$, whence $p \in \text{cl}_\tau(G)$. Conversely, let $p \in \text{cl}_\tau(G)$, and let $a_\tau(U)$ be a basic open neighborhood of p in Y''. Then, $U \in \tau''$. So, $o_\tau(\text{int}_x \text{cl}_y U)$ is an open neighborhood of p in Y such that $o_\tau(\text{int}_x \text{cl}_y U) \cap G \neq \emptyset$. This implies that $a_\tau(U) \cap G \neq \emptyset$. Hence, $p \in \text{cl}_\tau(G)$. The rest follows from (c).

THEOREM 2.3. The spaces $Y' \setminus X, Y'' \setminus X$, and $Y'' \setminus X$ are pairwise homeomorphic.
PROOF. To prove the continuity of the identity map \(i: Y^\omega \setminus X \to Y^\iota \setminus X \), let \(o_i(G) \setminus X \) be a basic open neighborhood of \(p \) in \(Y^\iota \setminus X \). Then, \(G \in \mathcal{F}^\iota \). Hence \(G \supseteq \text{int}_x \text{cl}_x U \) for some \(U \in \mathcal{G}^\iota \subseteq \mathcal{F}^\iota \). Therefore, \(o_i(U) \setminus X \) is an open neighborhood of \(p \) in \(Y^\omega \) such that \(o_i(U) \setminus X \subseteq o_i(G) \setminus X \). To prove that the identity map \(i: Y^\iota \setminus X \to Y^\iota \setminus X \) is continuous, let \(o_i(G) \setminus X \) be a basic open neighborhood of \(p \) in \(Y^\omega \setminus X \). Then \(o_i(\text{int}_x \text{cl}_x G) \setminus X \) is an open neighborhood of \(p \) in \(Y^\omega \) such that \(o_i(\text{int}_x \text{cl}_x G) \setminus X = o_i(G) \setminus X \). Hence, the spaces \(Y^\iota \setminus X \), and \(Y^\omega \setminus X \) are homeomorphic. The rest of the theorem follows directly from Lemma 2.2.

Let \(Z_1 \) and \(Z_2 \) be spaces. A map \(f: Z_1 \to Z_2 \) is called \(\theta \)-continuous [3] if for every \(p \in Z_1 \) and for every open neighborhood \(V \) of \(f(p) \) in \(Z_2 \), there exists an open neighborhood \(U \) of \(p \) in \(Z_1 \) such that \(f(\text{cl}_z U) \subseteq \text{cl}_z (V) \). \(f \) is called perfect if \(f \) is a closed map (not necessarily continuous) such that \(f^{-1}(z) \) is compact in \(Z_1 \) for every \(z \in Z_2 \). Also, \(f \) is called irreducible if \(f \) is closed and there is no proper closed subset \(K \) of \(Z_1 \) for which \(f(K) = Z_2 \). Two extensions \(Z_1 \), and \(Z_2 \) of a space \(X \) are called \(\theta \)-equivalent if there exists a \(\theta \)-homeomorphism \(f \) from \(Z_1 \) onto \(Z_2 \) such that \(f|_X = i_X \), the identity map on \(X \).

The next theorem depicts some of the several interrelationships between the spaces \(Y, Y^\iota, Y^\omega, \) and \(Y^\omega \).

THEOREM 2.4. Let \((Y, \tau) \) be an extension of a space \((X, \tau') \). The following statements are true.

(a) The identity map \(i: Y^\omega \to Y \) is perfect, irreducible and \(\theta \)-continuous.

(b) The identity map \(i: Y^\omega \to Y^\iota \) is perfect, irreducible and \(\theta \)-continuous.

(c) The identity map \(i: Y^\omega \to Y^\iota \) is \(\theta \)-continuous.

(d) The identity map \(i: Y^\iota \to Y^\iota \) is \(\theta \)-continuous.

(e) The identity map \(i: Y^\iota \to Y^\iota \) is \(\theta \)-continuous.

(f) The identity map \(i: Y^\iota \to Y^\iota \) is \(\theta \)-continuous.

(g) The identity map \(i: Y^\iota \to Y^\iota \) is \(\theta \)-continuous.

(h) The identity map \(i: Y^\iota \to Y^\iota \) is \(\theta \)-continuous.

(i) The identity map \(i: Y^\iota \to Y^\iota \) is \(\theta \)-continuous.

(j) The identity map \(i: Y^\iota \to Y^\iota \) is \(\theta \)-continuous.

(k) The identity map \(i: Y^\iota \to Y^\iota \) is \(\theta \)-continuous.

(l) The identity map \(i: Y^\iota \to Y^\iota \) is \(\theta \)-continuous.

PROOF. Below, we outline the proofs of some parts of the theorem. The rest of the proofs are analogous.

Part (a) Since \(\tau_\omega \leq \tau, i: Y \to Y^\omega \) is continuous. Hence, \(i: Y \to Y^\omega \) is irreducible and perfect. To prove the \(\theta \)-continuity of \(i: Y^\omega \to Y \), let \(V \) be an open neighborhood of \(p \) in \(Y \). Then \(V \cap X \in \mathcal{G}^\omega \) and \(\text{int}_x \text{cl}_x (V \cap X) \in \mathcal{F}^\omega \). Therefore, \(a_i(\text{int}_x \text{cl}_x (V \cap X)) \) is an open neighborhood of \(p \) in \(Y^\omega \) such that
Proposition 2.5. Let ϕ and ψ be two θ-equivalent extensions of a space X, and let X' be a θ-extension of X. Then, ϕ and ψ are θ-homeomorphic if and only if X' is dense in ϕ and ψ. If X' is not dense in both ϕ and ψ, then ϕ and ψ are not θ-homeomorphic.

Corollary 2.1. Let (Y,τ) be an extension of (X,τ'), and let Y'' be a θ-extension of Y. Then, Y'' is θ-equivalent to Y. Moreover, Y'' is a θ-extension of Y if and only if Y' is a θ-extension of Y. If Y'' is not a θ-extension of Y, then Y'' is not θ-equivalent to Y.
LEMMA 3.1. For each $G \in \tau'$, $cl_\omega(o(G)) = cl_\omega(o(G))$ and $cl_\omega(o(G)) = cl_\omega(o(G))$.

THEOREM 3.2. Each one of the identity maps $i: Y^* \rightarrow Y^*$, and $i: Y^* \rightarrow Y^*$ is θ-continuous.

THEOREM 3.3. The spaces Y^*, Y^*, Y^*, and Y^* are θ-homeomorphic. Moreover, Y^*, Y^*, and Y^* are θ-equivalent extensions of X with homeomorphic remainders.

COROLLARY 3.1. If (Y, τ) is an extension of a space (X, τ'), then the spaces Y^*, Y^*, Y^*, and Y^* are homeomorphic in pairs. Moreover, the spaces Y^*, Y^*, and Y^* are equivalent extensions of X.

REMARKS 3.1. (a) If P is any property of topological spaces which is preserved under θ-continuous surjections, and if (Y, τ) is a P-extension of (X, τ'), then Y, Y^*, Y^*, and Y^* are also P-extensions of X.

(b) The extensions Y^*, Y^*, Y^*, and Y^* introduced above are, in general, all distinct from Y, Y^*, and Y^*. It would be interesting to find a characterization of spaces Y for which $Y^* = Y$. A space Z is called H-closed if it is closed in every Hausdorff space in which it is embedded [see 11 for more details]. The Katetov (respectively, Fomin) extension of a space (X, τ') is the space κX (respectively, σX) whose underlying set is the set $X \cup \{p: p$ is a free open ultrafilter on $X\}$, and whose topology has for an open base the family $\tau' \cup \{U \cup \{p\}: U \in p, p \in \kappa X \setminus X\}$ (respectively, the family $\{o_x(U): U \in \tau'\}$). The spaces κX, and σX are H-closed extensions of X such that $(\sigma X)^* = \kappa X$, and $(\kappa X)^* = \sigma X$ [3, 6, 11]. In general $(\kappa X)^* \neq (\sigma X)^* = \kappa X$, and $(\kappa X)^* \neq (\sigma X)^* = \sigma X$. Analogous remarks apply to the Banaschewski-Fomin-Shanin extension μX [13] of a Hausdorff space X.

(c) A space Z is called compact like, or nearly compact if every regular open cover of Z is reducible to a finite subcover. A space X has a compactlike extension if and only if X_ω is Tychonoff [14]. Compactlike extensions (=near compactifications) of Hausdorff almost completely regular spaces X (whence, X_ω is Tychonoff) have been constructed in [2] via θ-proximities. For a Hausdorff space X whose semiregularization X_ω is Tychonoff, a maximal compactlike extension BX of X, satisfying $(BX)_\omega = \beta X$, is constructed in [14]. If (X, τ') is any Hausdorff almost completely regular space, and if (Y, τ) is any near compactification of (X, τ'), then so are Y^*, Y^*, Y^*, and Y^*.

(d) A space Z is called almost real compact if every open ultrafilter on Z with countable closed intersection property in Z converges in Z [4]. A space Z is almost realcompact if and only if Z_ω is almost realcompact [12]. Almost realcompactifications of a Hausdorff space have been constructed (among others) in [7], and [12]. If (X, τ') is any Hausdorff space, and if (Y, τ) is any almost realcompactification of (X, τ'), then so are Y^*, Y^*, Y^*, and Y^*.

(e) A Hausdorff space Z is called extremally disconnected if for each open subset U of Z, $cl_\omega(U)$ is open. A space Z is extremally disconnected if and only if each dense subspace of Z [respectively, if and only if Z_ω] is extremally disconnected [see 11 for more details]. A Hausdorff space Z is called s-closed if it is H-closed and extremally disconnected [8]. A Hausdorff space Z is s-closed if and only if Z_ω is s-closed. It is shown in [8] that every extremally disconnected space X admits an s-closed extension, viz.
moreover, an extension \(Y \) of \(X \) is s-closed if and only if \(X \) is \(C' \)-embedded in \(Y \). If \((X, \tau') \) is any extremally disconnected Hausdorff space, and if \((Y, \tau) \) is any s-closed extension of \((X, \tau') \), then so are \(y', y'', y^*, \) and \(y^{**} \).

REFERENCES

