GENERALIZED FRACTIONAL CALCULUS TO A SUBCLASS OF ANALYTIC FUNCTIONS FOR OPERATORS ON HILBERT SPACE

YONG CHAN KIM, JAE HO CHOI, AND JIN SEOP LEE
Department of Mathematics
Yeungnam University
Gyongsan 712-749, KOREA

(Received May 20, 1996 and in revised form July 2, 1996)

ABSTRACT. In this paper, we investigate some generalized results of applications of fractional integral and derivative operators to a subclass of analytic functions for operators on Hilbert space.

KEY WORDS AND PHRASES: Multivalent function, Fractional calculus, Riesz-Dunford integral.
1991 AMS SUBJECT CLASSIFICATION CODES: 30C45, 33C20.

1. INTRODUCTION AND DEFINITIONS

Let \(A \) denote the class of functions of the form:

\[
f(z) = \sum_{n=0}^{\infty} a_{n+1} z^{n+1} \quad (a_1 := 1),
\]

which are analytic in the open unit disk

\[U = \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \}. \]

Also let \(S \) denote the class of all functions in \(A \) which are univalent in the unit disk \(U \).

Let \(S_0(\alpha, \beta, \gamma, p) \) denote the class of functions

\[
f(z) = z^p - \sum_{n=1}^{\infty} a_{n+p} z^{n+p} \quad (a_{n+p} \geq 0),
\]

which are analytic and \(p \)-valent in \(U \) and satisfy the condition

\[
\left| \frac{zf'(z)}{f(z)} - p \right| < \beta \left| \alpha \frac{zf'(z)}{f(z)} + (p - \gamma) \right|
\]

for \(0 \leq \alpha \leq 1, 0 < \beta \leq 1, 0 \leq \gamma < p, p \in \mathbb{N} \) and \(z \in U \). See Lee et al [1] for further information on them. It is easily found that \(S_0(\alpha, \beta, \gamma, p) \subset A \) when \(p = 1 \).

Let \(a, b, \) and \(c \) be complex numbers with \(c \neq 0, -1, -2, \cdots \). Then the Gaussian hypergeometric function \(\,\!_2F_1(z) \) is defined by

\[
_2F_1(z) \equiv _2F_1(a, b; c; z) := \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n n!} z^n,
\]

where \((\lambda)_n \) is the Pochhammer symbol defined, in terms of the Gamma function, by

\[
(\lambda)_n := \frac{\Gamma(\lambda + n)}{\Gamma(\lambda)} = \begin{cases} 1 & (n = 0) \\ \lambda(\lambda + 1) \cdots (\lambda + n - 1) & (n \in \mathbb{N} := \{1, 2, \cdots \}) \end{cases}.
\]
Let A be a bounded linear operator on a complex Hilbert space \mathcal{H}. For a complex valued function f analytic on a domain E of the complex plane containing the spectrum $\sigma(A)$ of A we denote $f(A)$ as Riesz-Dunford integral [2, p. 568], that is,

$$f(A) := \frac{1}{2\pi i} \int_C f(z)(zI - A)^{-1}dz,$$

where I is the identity operator on \mathcal{H} and C is positively oriented simple closed rectifiable contour containing $\sigma(A)$.

Also $f(A)$ can be defined by the series $f(A) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} A^n$ which converges in the norm topology [3].

Xiaopei [4] defined $S_0(\alpha, \beta, \gamma, p; A)$ by the class of functions

$$f(z) = z^p - \sum_{n=1}^{\infty} a_{n+p}z^{n+p} \quad (a_{n+p} \geq 0),$$

which is analytic and p-valent in \mathcal{U} and satisfies the condition,

$$\|Af'(A) - pf(A)\| < \beta\|\alpha Af'(A) + (p - \gamma)f(A)\|$$

for $0 \leq \alpha \leq 1$, $0 < \beta \leq 1$, $0 \leq \gamma < p$, $p \in \mathbb{N}$ and all operators A with $\|A\| < 1$ and $A \neq 0$ (denotes the zero operator on \mathcal{H}).

Let A^* denote the conjugate operator of A.

DEFINITION 1 ([4]). The fractional integral for operator of order a is defined by

$$D_{-}^{a}f(A) = \frac{1}{\Gamma(a)} \int_0^1 A^{a}f(tA)(1-t)^{a-1}dt,$$

where $a > 0$ and $f(z)$ is an analytic function in a simply-connected region of the z-plane containing the origin.

DEFINITION 2 ([4]). The fractional derivative for operator of order a is defined by

$$D_{+}^{a}f(A) = \frac{1}{\Gamma(1-a)} g'(A),$$

where $g(z) = \int_0^1 z^{1-a}f(tz)(1-t)^{-a}dt$ ($0 < a < 1$) and $f(z)$ is an analytic function in a simply-connected region of the z-plane containing the origin.

Srivastava et al. [5] introduced a fractional integral operator $I_{0+}^{a,b,c}$ defined by (cf. [6])

$$I_{0+}^{a,b,c}f(z) = z^{-b} \Gamma(a) \int_0^1 (1-t)^{a-1} 2F_1(a+b, -c; a; 1-t)f(tz)dt$$

$$a > 0; b, c \in \mathbb{R}; f(z) \in \mathcal{A}.$$

and Owa et al. [7] studied the fractional operator $J_{0+}^{a,b,c}$ defined by (see also Kim et al. [8])

$$J_{0+}^{a,b,c}f(z) = \frac{\Gamma(2-b)\Gamma(2+a+c)}{\Gamma(2-b+c)} z^b I_{0+}^{a,b,c}f(z) \quad (f \in \mathcal{A}).$$

The fractional derivative operator $D_{0+}^{a,b,c}$ is defined by (cf. [9])

$$D_{0+}^{a,b,c}f(z) = \frac{d}{dz} \left(z^{-b} \Gamma(1-a) \int_0^1 (1-t)^{-a} 2F_1(b-a+1, -c; 1-a; 1-t)f(tz)dt \right)$$

$$0 \leq a < 1; b, c \in \mathbb{R}; f(z) \in \mathcal{A}.$$

And we define $D_{0+}^{n+a,b,c}$ by
For all invertible operator A, we introduce the following definition:

DEFINITION 3. The fractional integral operator for operator $A^{\alpha,b,c}$ is defined by

$$I_{0,A}^{\alpha,b,c} f(A) = \frac{1}{\Gamma(a)} \int_0^1 A^{-b} \, T_2 F_1(a+b-c; a; 1-t) f(tA)(1-t)^{a-1} dt,$$

where $a > 0$ and $b, c \in \mathbb{R}$.

The fractional derivative operator for operator $A^{\alpha,b,c}$ is defined by

$$D_{0,A}^{\alpha,b,c} f(A) = \frac{1}{\Gamma(1-a)} g'(A),$$

where

$$g(z) = \int_0^1 z^{-b} \, T_2 F_1(b-a+1, -c; 1-a; 1-t) f(tz)(1-t)^{-a} dt,$$

$0 < a < 1$ and $b, c \in \mathbb{R}$. In both (1.14) and (1.15) $f(z)$ is an analytic function in a simply-connected region of the z-plane containing the origin with the order

$$f(z) = O(|z|^\epsilon), \quad z \to 0,$$

where $\epsilon > \max\{0, b - c\} - 1$ and the multiplicity of $(1-t)^{a-1}$ is in (1.14) and that of $(1-t)^{-a}$ in (1.15) removed by requiring $\log(1-t)$ to be real when $1 - t > 0$.

We note that

$$A^{a,b,c} f(A) = D_{0,A}^{a} f(A)$$

The object of this paper is to prove the distortion theorems of fractional integral and derivative operators to $S_0(\alpha, \beta, \gamma, p; A)$.

2. **RESULTS**

LEMMA 1 (Xiaopei [4, Theorem 2.1]. An analytic function $f(z)$ is in the class $S_0(\alpha, \beta, \gamma, p; A)$ for all proper contraction A with $A \neq 0$ if and only if

$$\sum_{k=1}^{\infty} \{|k + \beta[p - \gamma + \alpha(k + p)]\} a_k + p \leq \beta(p - \gamma + \alpha p)$$

for $0 \leq \alpha \leq 1, 0 < \beta \leq 1, 0 \leq \gamma < p$, and $p \in \mathbb{N}$.

The result is sharp for the function

$$f(z) = z^p - \frac{\beta(p - \gamma + \alpha p)}{k + \beta[p - \gamma + \alpha(k + p)]} z^{k+p} \quad (k \geq 1).$$

THEOREM 1. Let $p > \max\{b - c - 1, b - 1, -1 - c - a\}$ and $a(p + 1) > b(a + c)$. If $f(z) \in S_0(\alpha, \beta, \gamma, p; A)$, then

$$\|I_{0,A}^{\alpha,b,c} f(A)\| \leq \frac{\Gamma(p+1-b+c)\Gamma(p+1)}{\Gamma(p+1-b)\Gamma(a+p+1+c)} \|A\|^{-b}$$

$$+ \frac{\beta(p - \gamma + \alpha p)\Gamma(p+1-b+c)\Gamma(p+1)}{\{1 + \beta[p - \gamma + \alpha(p+1)]\}\Gamma(p+1-b)\Gamma(a+p+1+c)} \|A\|^{p+1-b}$$

and

$$\|D_{0,A}^{\alpha,b,c} f(A)\| \leq \frac{\Gamma(p+1-b+c)\Gamma(p+1)}{\Gamma(p+1-b)\Gamma(a+p+1+c)} \|A\|^{-b}$$

$$+ \frac{\beta(p - \gamma + \alpha p)\Gamma(p+1-b+c)\Gamma(p+1)}{\{1 + \beta[p - \gamma + \alpha(p+1)]\}\Gamma(p+1-b)\Gamma(a+p+1+c)} \|A\|^{p+1-b}$$

and
\[\|f(A)\| \geq \frac{\Gamma(p + 1 - b + c)\Gamma(p + 1)}{\Gamma(p + 1 - b)\Gamma(a + p + 1 + c)} \|A\|^{-b} \]

\[- \frac{\beta(p - \gamma + \alpha)}{1 + \beta[p - \gamma + \alpha(p + 1)]} \|A\|^{p+1} \|A^{-b}\| \]

(2.3)

for \(a > 0, b, c \in \mathbb{R} \) and all invertible operator \(A \) with \((A^\frac{1}{q})^* A^\frac{1}{q} = A\) \((q \in \mathbb{N})\), \(\|A\| < 1\) and \(r_{sp}(A) r_{sp}(A^{-1}) \leq 1\), where \(r_{sp}(A)\) is the radius of spectrum of \(A\).

Proof. Consider the function

\[F(A) = \frac{\Gamma(p + 1 - b)\Gamma(a + p + 1 + c)}{\Gamma(p + 1 - b + c)\Gamma(p + 1)} A^b r_{0,a} f(A) \]

\[= A^p - \sum_{k=1}^{\infty} B_{k+p} A^{k+p} \]

(2.4)

where

\[B_{k+p} = \frac{\Gamma(k + p + 1 - b + c)\Gamma(p + 1 + k)\Gamma(p + 1 - b)\Gamma(a + p + 1 + c)}{\Gamma(k + p + 1 - b)\Gamma(a + k + p + 1 + c)\Gamma(p + 1)\Gamma(p + 1 - b + c)} \]

Hence, for convenience, we put

\[\Phi(k) = \frac{\Gamma(k + p + 1 - b + c)\Gamma(p + 1 + k)\Gamma(p + 1 - b)\Gamma(a + p + 1 + c)}{\Gamma(k + p + 1 - b)\Gamma(a + k + p + 1 + c)\Gamma(p + 1)\Gamma(p + 1 - b + c)} a_{k+p} \]

(2.5)

Then, by the constraints of the hypotheses, we note that \(\Phi(k)\) is non-increasing for integers \(k \geq 1 \) and we have \(0 < \Phi(k) < 1 \). So \(F(z) \in S_0(\alpha, \beta, \gamma, p; A) \). By Lemma 1, we get

\[\{1 + \beta[p - \gamma + \alpha(p + 1)]\} \sum_{k=1}^{\infty} B_{k+p} \leq \sum_{k=1}^{\infty} \{k + \beta[p - \gamma + \alpha(k + p)]\} B_{k+p} \]

\[\leq \sum_{k=1}^{\infty} \{k + \beta[p - \gamma + \alpha(k + p)]\} a_{k+p} \]

\[\leq \beta(p - \gamma + \alpha p), \]

(2.6)

which gives

\[\sum_{k=1}^{\infty} B_{k+p} \leq \frac{\beta(p - \gamma + \alpha p)}{1 + \beta[p - \gamma + \alpha(p + 1)]} . \]

Therefore, in a similar way with the proof of [4, Theorem 2.3, p. 305], we obtain

\[\|r_{0,a} f(A)\| \geq \frac{\Gamma(p + 1 - b + c)\Gamma(p + 1)}{\Gamma(p + 1 - b)\Gamma(a + p + 1 + c)} \|A\|^{-b} \|A\|^{p} \]

\[- \frac{\beta(p - \gamma + \alpha)}{1 + \beta[p - \gamma + \alpha(p + 1)]} \|A\|^{p+1} \|A^{-b}\| \]

(2.7)

and

\[\|r_{0,a} f(A)\| \leq \frac{\Gamma(p + 1 - b + c)\Gamma(p + 1)}{\Gamma(p + 1 - b)\Gamma(a + p + 1 + c)} \|A\|^{-b} \|A\|^{p} \]

\[+ \frac{\beta(p - \gamma + \alpha)}{1 + \beta[p - \gamma + \alpha(p + 1)]} \|A\|^{p+1} \|A^{-b}\| \]

(2.8)

By equation (7) of [4, p.307],
\[\|A^b\| = \|A\|^b \quad (b > 0). \]
(2.9)

Since \(A^*A = AA^* \), \(\|A\| = r_{sp}(A) \). So

\[1 = \|AA^{-1}\| \leq \|A\| \|A^{-1}\| = r_{sp}(A)r_{sp}(A^{-1}) \leq 1. \]

Thus

\[\|A^{-1}\| = \|A\|^{-1}. \]
(2.10)

By (2.9) and (2.10),

\[\|A^b\| = \|A\|^b \]
(2.11)

for all real \(b \). Therefore from (2.7), (2.8) and (2.11) we have the desired estimates.

THEOREM 2. Let \(p > \max(b - c - 1, b, 2 - c + a), c + 1 < (p - b)(1 - a + p + c) \), and \(b(2 - a + c) \leq (1 - a)(1 + p) \). If \(f(z) \in \mathcal{S}_0(\alpha, \beta, \gamma, p; A) \), then

\[\|D_{0, A}^{\alpha, \beta, c} f(A)\| \leq \frac{\Gamma(p + 1 - b + c)\Gamma(p + 1)}{\Gamma(p - b)\Gamma(2 - a + p + c)} \|A\|^{p-b-1} \]

\[+ \frac{\beta(p + 1)(p - \gamma + \alpha p)\Gamma(p + 1 - b + c)\Gamma(p + 1)}{\{1 + \beta[p - \gamma + \alpha(p + 1)]\}\Gamma(p - b)\Gamma(2 - a + p + c)} \|A\|^p \]
(2.12)

and

\[\|D_{0, A}^{\alpha, \beta, c} f(A)\| \geq \frac{\Gamma(p + 1 - b + c)\Gamma(p + 1)}{\Gamma(p - b)\Gamma(2 - a + p + c)} \|A\|^{p-b-1} \]

\[- \frac{\beta(p + 1)(p - \gamma + \alpha p)\Gamma(p + 1 - b + c)\Gamma(p + 1)}{\{1 + \beta[p - \gamma + \alpha(p + 1)]\}\Gamma(p - b)\Gamma(2 - a + p + c)} \|A\|^p \]
(2.13)

for \(0 < \alpha < 1, b, c \in \mathbb{R} \) and all invertible operator \(A \) with \((A^\frac{1}{2})^*A^\frac{1}{2} = A^\frac{1}{2}(A^\frac{1}{2})^* \) \((q \in \mathbb{N})\), \(\|A\| < 1 \) and \(r_{sp}(A)r_{sp}(A^{-1}) \leq 1 \), where \(r_{sp}(A) \) is the radius of spectrum of \(A \).

PROOF. Consider the function

\[G(A) = \frac{\Gamma(p - b)\Gamma(2 - a + p + c)}{\Gamma(p + 1 - b + c)\Gamma(p + 1)} A^{p+1}D_{0, A}^{\alpha, \beta, c} f(A) \]

\[= A^p - \sum_{k=1}^{\infty} \frac{\Gamma(k + p + 1 - b + c)\Gamma(p + 1 + k)\Gamma(p - b)\Gamma(2 - a + p + c)}{\Gamma(k + p - b)\Gamma(2 - a + k + p + c)\Gamma(p + 1)\Gamma(p + 1 - b + c)} a_{k+p}A^{k+p} \]

\[= A^p - \sum_{k=1}^{\infty} C_{k+p}A^{k+p}, \]
(2.14)

where

\[C_{k+p} = \frac{\Gamma(k + p + 1 - b + c)\Gamma(p + 1 + k)\Gamma(p - b)\Gamma(2 - a + p + c)}{\Gamma(k + p - b)\Gamma(2 - a + k + p + c)\Gamma(p + 1)\Gamma(p + 1 - b + c)} a_{k+p}. \]

Hence, for convenience, we put

\[\Psi(k) = \frac{\Gamma(k + p + 1 - b + c)\Gamma(p + 1 + k)\Gamma(p - b)\Gamma(2 - a + p + c)}{\Gamma(k + p - b)\Gamma(2 - a + k + p + c)\Gamma(p + 1)\Gamma(p + 1 - b + c)} \quad (k \in \mathbb{N}). \]
(2.15)

Then, by the constraints of the hypotheses, we note that \(\Psi(k) \) is non-increasing for integers \(k \geq 1 \) and we have \(0 < \Psi(k) < 1 \), i.e.,

\[0 < \frac{\Gamma(k + p + 1 - b + c)\Gamma(p + 1 + k)\Gamma(p - b)\Gamma(2 - a + p + c)}{\Gamma(k + p - b)\Gamma(2 - a + k + p + c)\Gamma(p + 1)\Gamma(p + 1 - b + c)} < k + p. \]

Also, by the relation

\[\frac{k + p}{p + 1} \{1 + \beta[p - \gamma + \alpha(p + 1)]\} \leq k + \beta[p - \gamma + \alpha(p + k)] \quad (k \geq 1), \]
(2.16)

we get
\[\sum_{k=1}^{\infty} \frac{k+p}{p+1} \left\{ 1 + \beta[p - \gamma + \alpha(p+1)] \right\} \Psi(k) a_{k+p} \leq \sum_{k=1}^{\infty} \left\{ \frac{k+\beta[p - \gamma + \alpha(k+p)]}{1 + \beta[p - \gamma + \alpha(p+1)]} \right\} \Psi(k) a_{k+p} \]
\[\leq \beta(p - \gamma + \alpha p), \] (2.17)

that is,
\[\sum_{k=1}^{\infty} (k+p) \Psi(k) a_{k+p} \leq \frac{\beta(p+1)(p - \gamma + \alpha p)}{1 + \beta[p - \gamma + \alpha(p+1)]} . \]

Therefore, in the same way with the proof of Theorem 1, we obtain
\[\| D_{0,A}^{a,b,c} f(A) \| \leq \frac{\Gamma(p+1-b+c)\Gamma(p+1)}{\Gamma(p-b)\Gamma(2-a+p+c)} \| A \|^p-b-1 \]
\[+ \frac{\Gamma(p+1-b+c)\Gamma(p+1)}{\Gamma(p-b)\Gamma(2-a+p+c)} \| A \|^p-b \sum_{k=1}^{\infty} (k+p) \Psi(k) a_{k+p} \]
\[\leq \frac{\Gamma(p+1-b+c)\Gamma(p+1)}{\Gamma(p-b)\Gamma(2-a+p+c)} \| A \|^p-b-1 \]
\[+ \frac{\beta(p+1)(p - \gamma + \alpha p)\Gamma(p+1-b+c)\Gamma(p+1)}{\Gamma(p-b)\Gamma(2-a+p+c)} \| A \|^p-b \] (2.18)

and
\[\| D_{0,A}^{a,b,c} f(A) \| \geq \frac{\Gamma(p+1-b+c)\Gamma(p+1)}{\Gamma(p-b)\Gamma(2-a+p+c)} \| A \|^p-b-1 \]
\[- \frac{\beta(p+1)(p - \gamma + \alpha p)\Gamma(p+1-b+c)\Gamma(p+1)}{\Gamma(p-b)\Gamma(2-a+p+c)} \| A \|^p-b \] (2.19)

REMARK. (i) By the proof of Theorem 1, if we put
\[F(z) = z^{a,b,c} f(z) := \frac{\Gamma(p+1-b+c)\Gamma(a+p+1+c)}{\Gamma(p+1-b-c)\Gamma(p+1)} z^b \Delta_{0,z}^{a,b,c} f(z), \] (2.20)

then we know that \(\Delta_{0,z}^{a,b,c} \) is a fractional linear operator from \(\Delta_0(\alpha, \beta, \gamma, p) \) to itself.

(ii) From (1.17) it is easy to see that Theorem 1 and Theorem 2 are generalizations of [4, Theorem 3.1 and Theorem 3.2].

ACKNOWLEDGEMENT. The authors were partially supported by KOSEF (94-0701-02-01-3) and TGRC-KOSEF, and by the Basic Science Research Institute Program, Ministry of Education, 1994 (BSRI-96-1401).

REFERENCES

[9] SOHI, N.S., Distortion theorems involving certain operators of fractional calculus on a class of p-valent functions, in Fractional Calculus and its Applications (K. Nishimoto, Ed.), Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, College of Engineering (Nihon University), Koriyama, 1990, pp. 245-252.