DIFFERENCE SEQUENCE SPACES

A.K. GAUR
Department of Mathematics
Duquesne University
Pittsburgh, PA 15282, U.S.A.
and
MURSALEEN*
Department of Mathematics
Aligarh Muslim University
Aligarh 202002, INDIA

(Received April 17, 1996 and in revised form July 29, 1996)

ABSTRACT. In [1]

$$S_r(\Delta) = \{x = (x_k) : (k^r|\Delta x_k|)_k^{\infty} \in c_0\}$$

for $r \geq 1$ is studied. In this paper, we generalize this space to $S_r(p, \Delta)$ for a sequence of strictly positive reals. We give a characterization of the matrix classes $(S_r(p, \Delta), \ell_\infty)$ and $(S_r(p, \Delta), \ell_1)$.

KEY WORDS AND PHRASES: Difference sequence spaces, Köthe-Toeplitz duals, matrix transformations.

1991 AMS SUBJECT CLASSIFICATION CODES: 40H05, 46A45.

1. INTRODUCTION

Let ℓ_∞, c and c_0 be the sets of all bounded, convergent and null sequences of $x = (x_k)_1^{\infty}$, respectively. Let w denote the set of all complex sequences and ℓ_1 denote the set of all convergent and absolutely convergent series.

Let z be any sequence and Y be any subset of w. Then

$$z^{-1} \cdot Y = \{x \in w : zx = (x_kz)_1^{\infty} \in Y\}.$$

For any subset X of w, the sets

$$X^\alpha = \bigcap_{x \in X} (z^{-1} \cdot \ell_1)$$

and

$$X^\beta = \bigcap_{x \in X} (z^{-1} \cdot c\ell)$$

are called the α- and β-duals of X.

We define the linear operators $\Delta, \Delta^{-1} : w \to w$ by

$$\Delta x = (\Delta x_k)_1^{\infty} = (x_k - x_{k+1})_1^{\infty},$$

and

$$\Delta^{-1} x = (\Delta^{-1} x_k)_1^{\infty} = \left(\sum_{j=1}^{k-1} x_j\right)_1^{\infty},$$

such that
Let
\[S_r(\Delta) := \{ x \in w : (k^r|\Delta x_k|)_k=1^\infty \in c_0 \}, \text{ see [1].} \]

In this paper we extend the space \(S_r(\Delta) \) to \(S_r(p, \Delta) \) in the same manner as \(c_0, c, \ell_\infty \) were extended to \(c_0(p), c(p), \ell_\infty(p) \), respectively (cf. [2],[3],[4]). We also determine the \(\alpha \)- and \(\beta \)-duals of our new sequence space. Let \(p = (p_k)_k=1^\infty \) be an arbitrary sequence of positive reals and \(r \geq 1 \), then we define
\[S_r(p, \Delta) := \{ x \in w : (k^r|\Delta x_k|)_k=1^\infty \in c_0(p) \}, \]
where
\[c_0(p) := \left\{ x \in w : \lim_{k \to \infty} |x_k|^p_k = 0 \right\}. \]

If \(p = e = (1, 1, 1, \ldots) \), then the set \(S_r(p, \Delta) \) reduces to the set \(S_r(\Delta) \). For \(r = 0 \), \(S_r(p, \Delta) \) is the same as \(\Delta c_0(p) \) (cf. [5],[6],[7]).

We will need the following lemmas:

Lemma 1 (Corollary 1 in [7]). Let \((p_k)_{k=1}^\infty \) be a sequence of nondecreasing positive reals. Then \(a \in (p_k)_{k=1}^\infty \cdot c_0 \) implies \(R(n \in (p_n)_{k=1}^\infty \cdot c_0 \) where \(R_n = \sum_{k=n+1}^\infty a_k \) \(n = 1, 2, \ldots \).

Lemma 2 (Lemma 1(b) in [8]). Let \(p = (p_k)_{k=1}^\infty \) be a strictly positive sequence such that \(p \in \ell_\infty \). Then \(A \in (c_0(p), \ell_1) \) if and only if
\[(*) \quad B(M) = \sup_{N \text{ finite}} \left(\sum_{k=1}^N \sum_{n \in N} \left| a_{nk} \right| \frac{M^{-1/p_k}}{M} \right) < \infty \]
for some integer \(M \geq 2 \).

2. **THE \(\alpha \)- AND \(\beta \)-DUALS OF \(S_r(p, \Delta) \)**

Theorem 2.1. Let \(p = (p_k)_{k=1}^\infty \) be a strictly positive sequence and \(r \geq 1 \). Then
\[(a) \quad [S_r(p, \Delta)]^\alpha = \bigcup_{N>1} D_r^{(1)}(p), \]
\[(b) \quad [S_r(p, \Delta)]^\beta = C_r(p) = \bigcap_{\nu \in c_0^+} \bigcap_{N>1} D_r^{(2)}(p) \bigcap_{N>1} D_r^{(3)}(p), \]
where
\[D_r^{(1)}(p) := (\Delta_r^{-1}N^{-1/p})^{-1} \cdot \ell_1 = \left\{ a \in w : \sum_{k=1}^\infty \sum_{j=1}^{k-1} \frac{a_{jk}}{|R_k|} < \infty \right\}, \]
\[D_r^{(2)}(p) := (\Delta_r^{-1}v_j^{1/p})^{-1} \cdot c_0 = \left\{ a \in w : \sum_{k=1}^\infty \sum_{j=1}^{k-1} \frac{v_j^{1/p}}{|R_k|} \text{ converges} \right\}, \]
\[D_r^{(3)}(p) := \left\{ a \in w : R \in \left(\frac{N^{-1/p}}{k^r} \right)^{-1} \cdot \ell_1 \right\} = \left\{ a \in w : \sum_{k=1}^\infty |R_k| \frac{N^{-1/p}}{k^r} < \infty \right\}, \]
and \(c_0^+ \) is the set of all positive sequences in \(c_0 \).

Proof. (a) Let \(a \in \bigcup_{N>1} D_r^{(1)}(p) \). Then
\[a \cdot s(1/N_0) \in \ell_1 \text{ for some } N_0 \geq 2, \quad (2.1) \]
where
\[s(1/N_0) = \left(s_k \left(\frac{1}{N_0} \right) \right)_{k=1}^{\infty} = \left(\sum_{j=1}^{k} \frac{N_0^{-1/p_j}}{j'} \right)_{k=1}^{\infty}. \]

Since \(s(1/N_0) \) is increasing, (2.1) implies that
\[a \in \ell_1. \] (2.2)

Let \(x \in S_r(p, \Delta) \). Then for a given \(N_0 \in \mathbb{N} \), there exists an \(M = M(N_0) \in \mathbb{N} \) such that
\[\sup_{k \geq M} |\Delta x_k|^{p_k} < \frac{1}{N_0}, \] and hence \(|\Delta x_k| \leq \frac{N_0^{-1/p_k}}{k^r} \) for all \(k = 1, 2, \ldots \), and consequently by (2.1) we have
\[\sum_{k=1}^{\infty} |a_k| \sum_{j=1}^{k-1} |\Delta x_j| \leq \sum_{k=1}^{\infty} |a_k| s_k(1/N_0) < \infty. \] (2.3)

Finally, by (2.2) and (2.3), we get
\[a \in [S_r(p, \Delta)]^a. \]

Let \(a \notin \bigcup_{N_1 \geq 1} D_r^{(1)}(p) \). Then we can determine a strictly increasing sequence \((k(m))_{m=1}^{\infty} \) of integers such that \(k(1) = 1 \) and
\[\sum_{k=k(m)}^{k(m+1)-1} |a_k| s_k(1/(m + 1)) > 1 \ (m = 1, 2, \ldots). \]

We define the sequence \(x = (x_k) \) by
\[x_k = \sum_{i=1}^{m} \sum_{j=1}^{\min\{k-1, k(i+1)-1\}} \frac{(i+1)^{-1/p_j}}{j'}, \quad (k(m) \leq k \leq k(m+1)-1; m = 1, 2, \ldots). \]

Then \(x \in S_r(p, \Delta) \) and
\[\sum_{k=1}^{\infty} |a_k| |x_k| = \sum_{m=1}^{\infty} \sum_{k=k(m)}^{k(m+1)-1} |a_k x_k| > \infty \]
which proves that
\[a \notin [S_r(p, \Delta)]^a. \]

Hence, \([S_r(p, \Delta)]^a = \bigcup_{n > 1} D_r^{(n)}(p)\).

(b) Let \(a \in C_r(p) \). Then \(a \in cs \), and Abel's summation by parts yields
\[\sum_{k=1}^{n} a_k x_k = -\sum_{k=1}^{n-1} R_k \Delta x_k + R_n \sum_{k=1}^{n-1} \Delta x_k + x_1 \sum_{k=1}^{n} a_k \text{ for all } x, \ (n = 1, 2, \ldots). \] (2.4)

Further
\[R \in \left(\frac{N_0^{-1/p}}{k^r} \right) \cdot \ell_1 \text{ for some integer } N_0 \geq 2. \] (2.5)

Let \(x \in S_r(p, \Delta) \). Then there is a sequence \(v \in c_0^+ \) such that
\[|\Delta x_k| \leq \frac{v_k^{1/p_k}}{k^r} \ (k = 1, 2, \ldots) \text{ and } |\Delta x_k| \leq \frac{N_0^{-1/p_k}}{k^r} \]
for all sufficiently large \(k \). Now, by (2.5)
\[\sum_{k=1}^{\infty} |R_k| |\Delta z_k| < \infty. \]

Hence

\[R \Delta x \in \ell_1 \subset cs. \quad (2.6) \]

Finally, by Lemma 1, \(a \in (\Delta^{-1} v^{1/p})^{-1} \cdot cs \) implies that

\[R \in (\Delta^{-1} v^{1/p})^{-1} \cdot c_0 \quad (2.7) \]

and consequently

\[R_n \sum_{k=1}^{n-1} \Delta z_k \to 0 \quad (n \to \infty). \quad (2.8) \]

From \(a \in cs, (2.4), (2.6) \) and (2.8), we conclude that

\[\sum_{k=1}^{\infty} a_k z_k = - \sum_{k=1}^{\infty} R_k \Delta z_k + z_1 \sum_{k=1}^{\infty} a_k \quad (2.9) \]

and \(ax \in cs. \) Thus \(a \in [S_r(p, \Delta)]^d. \) Now, let \(a \in [S_r(p, \Delta)]^d. \) Then \(ax \in cs \) for all \(x \in S_r(p, \Delta) \) and \(v \in S_r(p, \Delta). \) This implies that \(a \in cs. \) Let \(v \in c_0^+ \) be given. Then \(z = \Delta^{-1} v^{1/p} \in S_r(p, \Delta). \) Hence \(a \in (\Delta^{-1} v^{1/p})^{-1} \cdot cs, \) and by Lemma 1, we get (2.7). Therefore (2.8) holds for all \(x \in S_r(p, \Delta). \) By (2.4), we get \(R \Delta x \in cs. \) Since \(x \in S_r(p, \Delta) \) if and only if \(y = \Delta x = (k^n \Delta z_k)_{k=1}^{\infty} \in c_0(p), \) this implies that

\[\sum_{k=1}^{\infty} \left| R_k \left| \frac{N^{-1/p}}{k^r} \right| \right| < \infty \]

for some integer \(N \geq 2 \) (cf. [9], Theorem 6). Hence \([S_r(p, \Delta)]^d = C_r(p).\)

3. MATRIX TRANSFORMATIONS

For any infinite complex matrix \(A = (a_{nk})_{n,k=1}^{\infty}, \) we write \(A_n = (a_{nk})_{n,k=1}^{\infty} \) for the sequence in the \(n \)th row of \(A. \) Let \(X \) and \(Y \) be two subsets of \(\omega. \) By \((X, Y),\) we denote the class of all matrices \(A \) such that the series \(A_n(x) = \sum_{k=1}^{\infty} a_{nk} z_k \) converges for all \(x \in X \) and each \(n \in N, \) and the sequence \(A x = (A_n(x))_{n=1}^{\infty} \in Y \) for all \(x \in X. \)

THEOREM 3.1. Let \(p = (p_k)^{\infty} \) be a strictly positive sequence and \(r \geq 1. \) Then \(A \in (S_r(p, \Delta), \ell_\infty) \) if and only if

(i) \(D_r(v) = \sup_n |A_n(\Delta^{-1} v^{1/p})| = \sup_n \left| \sum_{k=1}^{\infty} a_{nk} \sum_{j=1}^{k-1} \frac{v^{1/p}}{j^r} \right| < \infty \) for all \(v \in c_0^+, \)

(ii) \(D_r(M) = \sup_n \left| R_{nk}\frac{M^{1/p}}{k^r} \right| < \infty \) for some integer \(M \geq 2, \)

where \(R_{nk} = \sum_{j=k+1}^{\infty} a_{nk} \) for all \(n \) and \(k, \) and

(iii) \(D_\infty = \sup_n |A_n(e)| = \sup_n \left| \sum_{k=1}^{\infty} a_{nk} \right| < \infty. \)
PROOF. Let the conditions (i), (ii) and (iii) be true and \(x \in S_r(p, \Delta) \). By Theorem 2.1(b), conditions (i) and (ii) imply that \(A_n \in [S_r(p, \Delta)]^p \) for \(n = 1, 2, \ldots \). For a given \(M \in \mathbb{N} \), there exists a \(M' = M'(M) \in \mathbb{N} \) such that \(\sup_{k \geq M'} |k \tau \Delta x_k| \leq \frac{1}{M} \), where \(M \geq 2 \) is the integer in (ii). By (2.9), we have
\[
|A_n(x)| \leq D_r(M) + |x_1|D_\infty \quad (n = 1, 2, \ldots)
\]
and hence \(Ax \in \ell_\infty \). Conversely, let \(A \in (S_r(p, \Delta), \ell_\infty) \). Since \(x = \Delta_\tau^{-1}v^{1/p} \in S_r(p, \Delta) \) for all \(v \in c_0^r \), condition (i) follows immediately. Also the necessity of (iii) follows from the fact that \(x = e \in S_r(p, \Delta) \). Now, by (i), (iii) and (2.9),
\[
A_n(x) = - \sum_{k=1}^{\infty} R_n k \Delta x_k + x_1 A_n(e) \quad (n = 1, 2, \ldots).
\]
Since \(Ax \in \ell_\infty \) and \(x_1 A_e \in \ell_\infty \), therefore \((R_n k \Delta x_k)_{n=1}^{\infty} \in \ell_\infty \). Since \(x \in S_r(p, \Delta) \) if and only if \((k' \Delta x_k)_{k=1}^{\infty} \in c_0(p) \), and \(\left(\sum_{k=1}^{\infty} (R_n k') (k' \Delta x_k) \right)_{n=1}^{\infty} \in \ell_\infty \) for all \((k' \Delta x_k)_{k=1}^{\infty} \in c_0(p) \), this implies that \(D_r(M) < \infty \) for some integer \(M \geq 2 \), and (ii) holds.

THEOREM 3.2. Let \(p = (p_k)_{k=1}^{\infty} \) be a strictly positive sequence such that \(p \in \ell_\infty \), and \(r \geq 1 \). Then \(A \in (S_r(p, \Delta), \ell_1) \) if and only if

(i) \[C_r^{(1)}(v) := \sup_{N \in \mathbb{N} \text{ finite}} \sum_{n \in N} A_n(\Delta_\tau^{-1}v^{1/p}) < \infty \]

for all sequences \(v \in c_0^r \),

(ii) \[C_r^{(2)}(M) := \sup_{N \in \mathbb{N} \text{ finite}} \left(\sum_{k=1}^{\infty} \sum_{n \in N} a_{nk} k^{-1} \sum_{j=1}^{v^{1/p}} \frac{v^{1/p}}{j} \right) < \infty \]

for some integer \(M \geq 2 \), and

(iii) \[D_r^{(3)} := \sup_{N \in \mathbb{N} \text{ finite}} \sum_{n \in N} A_n(e) \quad < \infty. \]

PROOF. Let conditions (i), (ii) and (iii) hold. Then \(A_n \in [S_r(p, \Delta)]^p \). Let \(x \in S_r(p, \Delta) \). For a given \(M \in \mathbb{N} \) there exists a \(M' = M'(M) \in \mathbb{N} \) such that \(\sup_{k \geq M'} |k \tau \Delta x_k|^{1/p} < \frac{1}{M} \). Now, by (2.9) and the inequality in [10], p. 33, we have
\[
\sum_{n=1}^{m} |A_n(x)| \leq 4(C_r^{(2)}(M) + |x_1|D_r^{(3)}) < \infty.
\]
Since \(m \in N \) is arbitrary, we have \(Ax \in \ell_1 \). Conversely, let \(A \in (S_r(p, \Delta), \ell_1) \). Then
\[
\left| \sum_{n \in N} A_n(x) \right| \leq \sum_{k=1}^{\infty} |A_n(x)| < \infty
\]
for all \(x \in S_r(p, \Delta) \) and for all finite subsets \(N \) of \(N \). Therefore the necessity of (iii) and (i) follows immediately, since \(e \) and \(x = \Delta_\tau^{-1}v^{1/p} \in S_r(p, \Delta) \) for every sequence \(v \in c_0^r \). Further we have
\[
\left(\sum_{k=1}^{\infty} \frac{R_{nk}}{k^r} k^n \Delta x_k \right)_{n=1}^{\infty} \in \ell_1 \quad \text{for all} \quad (k^n \Delta x_k)_{k=1}^{\infty} \in c_0(p),
\]

and hence (ii) holds by Lemma 2.

ACKNOWLEDGMENT. ({\ast}) This research is supported by the University Grant Commission, number F.8-14/94. The authors are grateful to the referee for his or her valuable suggestions which improved the clarity of this presentation.

REFERENCES

Submit your manuscripts at http://www.hindawi.com