LIMIT SETS IN PRODUCT OF SEMI-DYNAMICAL SYSTEMS

RAMJEE PRASAD BHAGAT

(Received 12 November 1996 and in revised form 9 March 1998)

ABSTRACT. Continuing the study of the properties of Poisson stability and distality [4], we mention the conditions under which \(\Omega_x(x) = \Pi \Omega_\alpha(x_\alpha), \alpha \in I \) and thus, the product of Poisson stable motions remains Poisson stable in the product system.

Keywords and phrases. Semi-dynamical system, Lagrange stability, distality, limit sets.
1991 Mathematics Subject Classification. 47H10, 54H25.

1. Introduction. We deal mainly with the product of \(w \)-limit sets in the product space of semi-dynamical systems (s.d.s). In [1], Prem Bajaj has shown that the product of semi-dynamical systems is a semi-dynamical system. He has also shown that \(\Pi \Omega_\alpha(x_\alpha), \alpha \in I \) contains the \(w \)-limit set \(\Omega_x(x) \) of \(x \) in the product system. In general, equality does not hold in the above. Indeed \(\Omega_x(x) \) may be empty. He has given two theorems: one in which \(\Omega_x(x) \) is nonempty and the other indicating a case of equality viz. Theorems 2.3 and 2.4.

In this paper, continuing the study of the properties of Poisson stability and distality [4], we mention the conditions under which \(\Omega_x(x) = \Pi \Omega_\alpha(x_\alpha), \alpha \in I, x = \{x_\alpha\} \) and therefore, the product of Poisson stable motions, under these conditions, is Poisson stable.

2. Definitions and notations

Definition 2.1. A continuous mapping \(\pi : X \times \mathbb{R}^+ \rightarrow X \) on a topological space \(X \) is said to define a semi-dynamical system \((X, \pi) \) if \(\pi(x, 0) = x \) and \(\pi(\pi(x, t), s) = \pi(x, t + s) \) for every \(x \in X \) and \(t, s \in \mathbb{R}^+ \). (\(\mathbb{R}^+ \) denotes the set of nonnegative reals.)

Definition 2.2. Let \((X_\alpha, \pi_\alpha), \alpha \in I \) be a family of dynamical systems. Let \(X = \Pi X_\alpha \) be the product space. Let \(x \in X \) and \(x = \{x_\alpha\} \). Define a map \(\pi \) from \(X \times \mathbb{R} \) into \(X \) by \(\pi(x_\alpha t) = (x_\alpha t), \alpha \in I, \) then \((X, \pi) \) is a dynamical system. The dynamical system \((X, \pi) \), obtained above, is called the direct product or the product of the family \((X_\alpha, \pi_\alpha), \alpha \in I \).

We take the usual definitions of positive limit set \(\Omega_x \), positive distal, positive Poisson stable, and positive Lagrange stable motions. As usual, we drop the word positive and we use the notations of [1, 4].

3. Main results

Proposition 3.1. Let \((X_\alpha, \pi_\alpha), \alpha \in I, \) be a family of \{Lagrange stable\ \} \{distal\} s.d.s.
and \((X, \pi)\) the product s.d.s. Let \(x \in X\) and \(x = \{x_\alpha\}\), then \((X, \pi)\) is \{Lagrange stable\} {distal}.

Proposition 3.2. If a Lagrange stable motion is Poisson stable and distal, then \(\text{ClY}(x) = \Omega(x) = \Omega_x\).

Proof. The proof follows from [4, Thm. 2.1].

Theorem 3.3. Let \((X_\alpha, \pi_\alpha), \alpha \in I\), be a family of dynamical systems and \((X, \pi)\) the product of the dynamical systems. Let \(x \in X\) and \(x = \{x_\alpha\}\). Then \(\Omega_x(x) \subseteq \prod \Omega_{x_\alpha}(x_\alpha)\), where \(\Omega_{x_\alpha}(x_\alpha)\) is the positive limit set of \(x_\alpha\) in the dynamical systems \((X_\alpha, \pi_\alpha)\). (The two \(\pi\)'s have distinct meanings according to the context.)

Since, in general, the equality does not hold and \(\Omega_x\) may be empty, the Poisson stability in the constituent dynamical system may be lost from the product of the dynamical systems. Here, we find the conditions under which \(\Omega_x(x) = \prod \Omega_{x_\alpha}(x_\alpha), \alpha \in I\) and thus, the product of Poisson stable motions remains Poisson stable in the product system.

Theorem 3.4. If a compact motion is Poisson stable and distal, then it is a compact recurrent motion.

Proof. Let the motion \(\pi(x, t)\) be Poisson stable and distal, then its trajectory \(\text{Y}(x)\) is closed. Therefore,

\[\text{Y}(x) = \text{ClY}(x) = \Omega_x.\]

(3.1)

As the motion is compact, each of the above sets is compact and minimal and thus, by Birkhoff recurrence theorem, \(\pi(x, t)\) is compact and recurrent.

Theorem 3.5. Let \((X, \pi)\) be a semi-dynamical system. Let \(\pi\) be a Lagrange stable, then \(\pi\) is distal if and only if, for every net \(t_i\) in \(\mathbb{R}^+\), the phase space

\[X = \{z \in X : xt_j \rightarrow z \text{ for some } x \in X \text{ and some subnet } t_j \text{ of } t_i\}\]

(3.2)

\[2, \text{Thm. 2.6}].

Theorem 3.6. Let \((X, \pi)\) be Lagrange stable and distal s.d.s. then every net in the trajectory \(Y(x)\) of the Poisson stable motion \(\pi(x, t)\) is a Cauchy net.

Proof. Let \(Y(x)\) be the trajectory of the Poisson stable motion \(\pi(x, t)\) in s.d.s. \((X, \pi)\) which is Lagrange stable and distal. Let \(xt_n\) be a net in \(Y(x)\) which is compact (Proposition 3.2). Therefore, \(xt_n\) has a subnet, say \(xt_m\) with \(xt_m \rightarrow z\), i.e., \(z\) is a cluster point of \(xt_n\). Hence, \(xt_n\) is a Cauchy net.

Theorem 3.7. Let \((X_\alpha, \pi_\alpha), \alpha \in I\), be a family of Lagrange stable and distal s.d.s. and \((X, \pi)\) be the product s.d.s. Let \(x \in X\) and \(x = \{x_\alpha\}\). A motion \(\pi(x, t)\) is Poisson stable in \((X, \pi)\) if and only if \(\pi_\alpha(x_\alpha, t)\) is Poisson stable in \((X_\alpha, \pi_\alpha)\) for each \(\alpha \in I\).

Proof. Let \((x_\alpha, \pi_\alpha), \alpha \in I\), be a Lagrange stable and distal s.d.s. Let \(\pi(x_\alpha, t) = x_\alpha t\) be a Poisson stable motion in \((X_\alpha, \pi_\alpha), \alpha \in I\), then its trajectory \(Y_\alpha(x_\alpha)\) is compact and the net \(x_\alpha t_n, \alpha \in I\), is a Cauchy net in \(Y_\alpha(x_\alpha)\) (Theorem 3.6). Now, the Cauchy
nets $x_\alpha t_n$, $\alpha \in I$ yield the Cauchy net xt_n in $Y(x)$ in (X, π) [3, p. 194]. As the product of compact sets is a compact set, $Y(x)$ is compact and xt_n is a net in compact $Y(x)$. Thus, it has a subnet $xt_m \to z$, i.e., z is a cluster point of xt_n. Hence, xt_n is frequently in every neighborhood U of z. Given a neighborhood U of z for every $i \in A$, there is a $j \in A$, $i \geq J$ such that $xt_i \in U$ however $t_i \to +\infty$. Hence, $\pi(x, t)$ is Poisson stable. The converse follows from [3, Thm. 25, p. 194] which states that a net in the product is a Cauchy net if and only if its projection into each coordinate space is a Cauchy net.

Theorem 3.8. Let (X_α, π_α), $\alpha \in I$, be a family of Lagrange stable distal s.d.s. Let $x \in X$, $x = \{x_\alpha\}$, and (X, π) the product s.d.s. Let $Y_\alpha(x_\alpha)$, $\alpha \in I$, be the product of trajectories. Then $\Pi Y_\alpha(x_\alpha) = Y(x)$. Moreover,

$$\Pi \Omega_\alpha(x_\alpha) = \Omega_\chi(x).$$

(3.3)

Proof. Since each $Y_\alpha(x_\alpha)$, $\alpha \in I$, is closed and compact,

$$\text{Cl} \Pi Y_\alpha(x_\alpha) = \Pi \text{Cl} Y_\alpha(x_\alpha) = \text{Cl} Y(x),$$

(3.4)

$$\Pi Y_\alpha(x_\alpha) = Y(x).$$

(3.5)

Moreover,

$$\Pi \Omega_\alpha(x_\alpha) = \Omega_\chi(x).$$

(3.6)

References

Bhagat: Department of Mathematics, A. S. College Bikramganj, PIN 802212, Rohtas, Bihar, India
Submit your manuscripts at http://www.hindawi.com