SOME REMARKS ON THE ALGEBRAIC STRUCTURE OF THE FINITE COXETER GROUP F_{4}

MUHAMMAD A. ALBAR and NORAH AL-SALEH

(Received 10 October 1996 and in revised form 31 January 1997)

AbStract. We consider in this paper the algebraic structure and some properties of the finite Coxeter group F_{4}.

Keywords and phrases. Presentation, Reidemeister-Schreier method, Coxeter groups.
1991 Mathematics Subject Classification. 20F05.

1. Introduction. The group F_{4} is one of the irreducible Coxeter groups [9] defined by the presentation

$$
\begin{align*}
& F_{4}=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right| x_{i}^{2}=e, \quad 1 \leq i \leq 4 \\
& \left.\qquad\left(x_{1} x_{2}\right)^{3}=\left(x_{3} x_{4}\right)^{3}=\left(x_{2} x_{3}\right)^{4}=\left(x_{1} x_{3}\right)^{2}=\left(x_{1} x_{4}\right)^{2}=\left(x_{2} x_{4}\right)^{2}=e\right\rangle \tag{1}
\end{align*}
$$

It has the graph

It is obvious that the group B_{3} whose graph is

is a subgroup of F_{4}. The order of B_{3} is known to be 48 [4]. It is easy to see that the index of B_{3} in F_{4} is 24 and hence the order of F_{4} is 1152 .
2. The structure of F_{4}. We define F_{4} by the presentation given in Section 1 . We consider the symmetric group of degree 3 with the presentation

$$
\begin{equation*}
S_{3}=\left\langle x, y \mid x^{2}=y^{2}=(x y)^{3}=e\right\rangle . \tag{2}
\end{equation*}
$$

We define the map $\theta: F_{4} \rightarrow S_{3}$, where

$$
\begin{equation*}
\theta\left(x_{1}\right)=x, \quad \theta\left(x_{2}\right)=y, \quad \theta\left(x_{3}\right)=\theta\left(x_{4}\right)=e \tag{3}
\end{equation*}
$$

It is easy to see that θ is an epimorphism and so $F_{4} /$ ker $\theta \cong S_{3}$. We use the Reidemei-ster-Schreier process to find a partition for $\operatorname{ker} \theta$.

A Schreier transversal for $\operatorname{ker} \theta$ in F_{4} is

$$
\begin{equation*}
U=\left\{e, x_{1}, x_{2}, x_{1} x_{2}, x_{2} x_{1}, x_{1} x_{2} x_{1}\right\} . \tag{4}
\end{equation*}
$$

The process gives us the following partition for $\operatorname{ker} \theta$:

$$
\begin{align*}
\operatorname{ker} \theta=\langle a, b, c, d| a^{2}=b^{2}=c^{2}=d^{2}= & (a b)^{2}=(b c)^{2} \\
& \left.=(a d)^{3}=(b d)^{3}=(c d)^{3}=(a c)^{2}=e\right\rangle . \tag{5}
\end{align*}
$$

Therefore, $\operatorname{ker} \theta$ is the Coxeter group D_{4} whose graph is

This shows that the group F_{4} is the split extension of the Coxeter group D_{4} by S_{3}.
REMARK 1. To identify the structure of D_{4}, we consider the map $\theta: D_{4} \rightarrow S_{4}$, where D_{4} is defined by the graph above and S_{4} is defined by the graph

and $\theta(a)=x, \theta(d)=y, \theta(b)=z$, and $\theta(c)=y$. Using the Reidemeister-Schreier process, we find that $\operatorname{ker} \theta \cong Z_{2}^{3}$. Thus, D_{4} is the split extension of Z_{2}^{3} by S_{4}. An alternative method is given in [3], where D_{n} is shown to be the semi-direct product of Z_{2}^{n-1} by S_{n}.

REMARK 2. A third method to show that $F \cong D_{4} \rtimes S_{3}$ follows. We consider D_{4} and S_{3} as having the following graphs:

where $x=(12)$ and $y=(23)$. We consider the natural action of S_{3} or D_{4} defined as

$$
\begin{equation*}
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{x}=\left(x_{2}, x_{1}, x_{3}, x_{4}\right) \quad \text { and } \quad\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{y}=\left(x_{1}, x_{3}, x_{2}, x_{4}\right) . \tag{6}
\end{equation*}
$$

We let E to be the split extension of D_{4} by S_{3} with this action. A presentation for E is $E=\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x, y\right|$ Relations of D_{4}, Relations of S_{3}, Action of S_{3} on $\left.D_{4}\right\rangle$.
(See [2].) Simple Tietze transformations show that $E \cong F_{4}$. Hence, $F_{4} \cong D_{4} \rtimes S_{3}$.
3. The derived series of F_{4}. We use the Reidemeister-Schreier process several times to find the derived series of F_{4}. Firstly, let F_{4} have the presentation in Section 1. $F_{4} / F_{4}^{\prime} \cong Z_{2} \times Z_{2}$ and we find that $F_{4}^{\prime}=\left\langle x, y \mid x^{3}=y^{3}=\left(x^{-1} y^{-1} x y\right)^{2}=e\right\rangle$. The group $F_{4}^{\prime} / F_{4}^{\prime \prime} \cong Z_{3} \times Z_{3}$ and we get $F_{4}^{\prime \prime}=\langle a, b, c, d| a^{2}=b^{2}=c^{2}=d^{2}=(a b)^{2}=(a c)^{2}=$ $\left.(c d)^{2}=(b d)^{2}=(b d c a)^{2}=e\right\rangle$. Finally, $F_{4}^{\prime \prime} / F_{4}^{\prime \prime \prime} \cong Z_{2}^{4}$ and we find $F_{4}^{\prime \prime \prime}=Z_{2}$. Thus, we have proved that F_{4} is solvable of derived length 4.
4. The center and the growth series of F_{4}. We have seen in Section 2 that $F_{4} \cong$ $D_{4} \rtimes S_{3}$ and that $D_{4} \cong Z_{2}^{3} \rtimes S_{4}$. It is easy to see that the center of D_{4} is Z_{2} (in general, $Z\left(D_{n}\right)=Z_{2}$ if n is even and $\{e\}$ if n is odd [3]). Since $Z\left(S_{3}\right)=\{e\}$, we see that $Z\left(F_{4}\right) \subseteq$ $Z\left(D_{4}\right)=Z_{2}$. Let $Z\left(D_{4}\right)$ be generated by g. From the Reidemeister-Schreier process, we can find g in terms of the generators of F_{4} and show that it does not commute with any of them. Hence, $Z\left(F_{4}\right)=\{e\}$.
The growth series (in the sense of Gromov and Milnor) of F_{4} is [5]

$$
\begin{equation*}
\gamma\left(F_{4}\right)=(1+t)^{4}\left(1+t^{2}\right)^{2}\left(1+t^{4}\right)\left(1-t+t^{2}\right)^{2}\left(1+t+t^{2}\right)^{2}\left(1-t^{2}+t^{4}\right) . \tag{8}
\end{equation*}
$$

The order of F_{4} is obtained here as $\gamma\left(F_{4}\right)(1)=2^{4} \times 2^{2} \times 2 \times 3^{2}=1152$.
Acknowledgement. The first author thanks King Fahd University of Petroleum and Minerals for the support he has got to conduct this research.

References

[1] N. A. Al Saleh, On the finite Coxeter groups, Ph.D. thesis, College of Girls, Dammam, Saudia Arabia, 1994.
[2] M. A. Albar, On presentation of group extensions, Comm. Algebra 12 (1984), no. 23-24, 2967-2975. MR 86g:20040. Zbl 551.20017.
[3] M. A. Albar and N. A. Al Saleh, The Coxeter group D_{n}, submitted.
[4] - On the affine Weyl group of type B_{n}, Math. Japon. 35 (1990), no. 4, 599-602. MR 91d:20030. Zbl 790.20048.
[5] M. A. Albar, N. A. Al Saleh, and M. A. Al Hamed, The growth series of Coxeter groups, 47 (1998), no. 3, 417-428.
[6] C. T. Benson and L. C. Grove, Finite reflection groups, Bogden \& Quigley, Inc., Publishers, Tarrytown on Hudson, N.Y., 1971. MR 52 4099. Zbl 579.20045.
[7] N. Bourbaki, Elements de mathematique. Groupes et algebres de Lie, Actualites Scientifiques et Industrielles, no. 1337, Hermann, Paris, 1968 (French), Chapitre IV: Groupes de Coxeter et systemes de Tits. Chapitre V: Groupes engendres par des reflexions. Chapitre VI: systemes de racines. MR 39\#1590. Zbl 186.33001.
[8] N. Broderick and G. Maxwell, The crystallography of Coxeter groups. II, J. Algebra 44 (1977), no. 1, 290-318. MR 58 11162b. Zbl 348.20041.
[9] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, fourth ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 14, Springer-Verlag, Berlin,New York, 1980. MR 81a:20001. Zbl 422.20001.
[10] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 92h:20002. Zbl 768.20016.
[11] G. Maxwell, The crystallography of Coxeter groups, J. Algebra 35 (1975), 159-177. MR 58 11162a. Zbl 312.20029.
[12] M. Suzuki, Group theory. I, Grun1dlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 247, Springer-Verlag, Berlin,

New York, 1982, Translated from the Japanese by the author. MR 82k:20001c. Zbl 472.20001.

Albar: Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia

Al-Saleh: Department of Mathematics, College of Girls, Dammam, Saudi Arabia

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

