SOME REMARKS ON THE ALGEBRAIC STRUCTURE OF THE FINITE COXETER GROUP F₄

MUHAMMAD A. ALBAR and NORAH AL-SALEH

(Received 10 October 1996 and in revised form 31 January 1997)

ABSTRACT. We consider in this paper the algebraic structure and some properties of the finite Coxeter group F_4 .

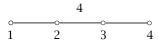
Keywords and phrases. Presentation, Reidemeister-Schreier method, Coxeter groups.

1991 Mathematics Subject Classification. 20F05.

1. Introduction. The group F_4 is one of the irreducible Coxeter groups [9] defined by the presentation

$$F_{4} = \left\langle x_{1}, x_{2}, x_{3}, x_{4} \mid x_{i}^{2} = e, \quad 1 \le i \le 4 \\ \left(x_{1}x_{2} \right)^{3} = \left(x_{3}x_{4} \right)^{3} = \left(x_{2}x_{3} \right)^{4} = \left(x_{1}x_{3} \right)^{2} = \left(x_{1}x_{4} \right)^{2} = \left(x_{2}x_{4} \right)^{2} = e \right\rangle.$$
(1)

It has the graph



It is obvious that the group B_3 whose graph is

		4	
o			_0
1	2		3

is a subgroup of F_4 . The order of B_3 is known to be 48 [4]. It is easy to see that the index of B_3 in F_4 is 24 and hence the order of F_4 is 1152.

2. The structure of F_4 . We define F_4 by the presentation given in Section 1. We consider the symmetric group of degree 3 with the presentation

$$S_3 = \langle x, y \mid x^2 = y^2 = (xy)^3 = e \rangle.$$
(2)

We define the map θ : $F_4 \rightarrow S_3$, where

$$\theta(x_1) = x, \quad \theta(x_2) = y, \quad \theta(x_3) = \theta(x_4) = e.$$
 (3)

It is easy to see that θ is an epimorphism and so $F_4 / \ker \theta \cong S_3$. We use the Reidemeister-Schreier process to find a partition for ker θ .

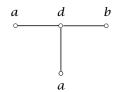
A Schreier transversal for ker θ in F_4 is

$$U = \{e, x_1, x_2, x_1 x_2, x_2 x_1, x_1 x_2 x_1\}.$$
 (4)

The process gives us the following partition for ker θ :

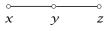
$$\ker \theta = \langle a, b, c, d \mid a^2 = b^2 = c^2 = d^2 = (ab)^2 = (bc)^2$$
$$= (ad)^3 = (bd)^3 = (cd)^3 = (ac)^2 = e \rangle.$$
(5)

Therefore, ker θ is the Coxeter group D_4 whose graph is



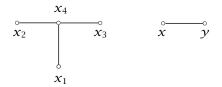
This shows that the group F_4 is the split extension of the Coxeter group D_4 by S_3 .

REMARK 1. To identify the structure of D_4 , we consider the map $\theta : D_4 \longrightarrow S_4$, where D_4 is defined by the graph above and S_4 is defined by the graph



and $\theta(a) = x$, $\theta(d) = y$, $\theta(b) = z$, and $\theta(c) = y$. Using the Reidemeister-Schreier process, we find that ker $\theta \cong Z_2^3$. Thus, D_4 is the split extension of Z_2^3 by S_4 . An alternative method is given in [3], where D_n is shown to be the semi-direct product of Z_2^{n-1} by S_n .

REMARK 2. A third method to show that $F \cong D_4 \rtimes S_3$ follows. We consider D_4 and S_3 as having the following graphs:



where x = (12) and y = (23). We consider the natural action of S_3 or D_4 defined as

 $(x_1, x_2, x_3, x_4)^x = (x_2, x_1, x_3, x_4)$ and $(x_1, x_2, x_3, x_4)^y = (x_1, x_3, x_2, x_4).$ (6)

We let *E* to be the split extension of D_4 by S_3 with this action. A presentation for *E* is

 $E = \langle x_1, x_2, x_3, x_4, x, y |$ Relations of D_4 , Relations of S_3 , Action of S_3 on $D_4 \rangle$. (7) (See [2].) Simple Tietze transformations show that $E \cong F_4$. Hence, $F_4 \cong D_4 \rtimes S_3$.

82

3. The derived series of F_4 . We use the Reidemeister-Schreier process several times to find the derived series of F_4 . Firstly, let F_4 have the presentation in Section 1. $F_4/F'_4 \cong Z_2 \times Z_2$ and we find that $F'_4 = \langle x, y | x^3 = y^3 = (x^{-1}y^{-1}xy)^2 = e \rangle$. The group $F'_4/F''_4 \cong Z_3 \times Z_3$ and we get $F''_4 = \langle a, b, c, d | a^2 = b^2 = c^2 = d^2 = (ab)^2 = (ac)^2 = (cd)^2 = (bdca)^2 = e \rangle$. Finally, $F''_4/F''_4 \cong Z'_2$ and we find $F''_4 = Z_2$. Thus, we have proved that F_4 is solvable of derived length 4.

4. The center and the growth series of F_4 . We have seen in Section 2 that $F_4 \cong D_4 \rtimes S_3$ and that $D_4 \cong Z_2^3 \rtimes S_4$. It is easy to see that the center of D_4 is Z_2 (in general, $Z(D_n) = Z_2$ if n is even and $\{e\}$ if n is odd [3]). Since $Z(S_3) = \{e\}$, we see that $Z(F_4) \subseteq Z(D_4) = Z_2$. Let $Z(D_4)$ be generated by g. From the Reidemeister-Schreier process, we can find g in terms of the generators of F_4 and show that it does not commute with any of them. Hence, $Z(F_4) = \{e\}$.

The growth series (in the sense of Gromov and Milnor) of F_4 is [5]

$$\gamma(F_4) = (1+t)^4 (1+t^2)^2 (1+t^4) (1-t+t^2)^2 (1+t+t^2)^2 (1-t^2+t^4).$$
(8)

The order of F_4 is obtained here as $\gamma(F_4)(1) = 2^4 \times 2^2 \times 2 \times 3^2 = 1152$.

ACKNOWLEDGEMENT. The first author thanks King Fahd University of Petroleum and Minerals for the support he has got to conduct this research.

REFERENCES

- [1] N. A. Al Saleh, *On the finite Coxeter groups*, Ph.D. thesis, College of Girls, Dammam, Saudia Arabia, 1994.
- M. A. Albar, On presentation of group extensions, Comm. Algebra 12 (1984), no. 23-24, 2967-2975. MR 86g:20040. Zbl 551.20017.
- [3] M. A. Albar and N. A. Al Saleh, *The Coxeter group* D_n , submitted.
- [4] _____, On the affine Weyl group of type B_n , Math. Japon. **35** (1990), no. 4, 599-602. MR 91d:20030. Zbl 790.20048.
- [5] M. A. Albar, N. A. Al Saleh, and M. A. Al Hamed, *The growth series of Coxeter groups*, 47 (1998), no. 3, 417-428.
- [6] C. T. Benson and L. C. Grove, *Finite reflection groups*, Bogden & Quigley, Inc., Publishers, Tarrytown on Hudson, N.Y., 1971. MR 52 4099. Zbl 579.20045.
- [7] N. Bourbaki, *Elements de mathematique. Groupes et algebres de Lie*, Actualites Scientifiques et Industrielles, no. 1337, Hermann, Paris, 1968 (French), Chapitre IV: Groupes de Coxeter et systemes de Tits. Chapitre V: Groupes engendres par des reflexions. Chapitre VI: systemes de racines. MR 39#1590. Zbl 186.33001.
- [8] N. Broderick and G. Maxwell, *The crystallography of Coxeter groups. II*, J. Algebra 44 (1977), no. 1, 290-318. MR 58 11162b. Zbl 348.20041.
- [9] H. S. M. Coxeter and W. O. J. Moser, *Generators and relations for discrete groups*, fourth ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 14, Springer-Verlag, Berlin, New York, 1980. MR 81a:20001. Zbl 422.20001.
- [10] J. E. Humphreys, *Reflection groups and Coxeter groups*, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 92h:20002. Zbl 768.20016.
- [11] G. Maxwell, *The crystallography of Coxeter groups*, J. Algebra **35** (1975), 159-177. MR 58 11162a. Zbl 312.20029.
- [12] M. Suzuki, Group theory. I, Grun1dlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 247, Springer-Verlag, Berlin,

MUHAMMAD A. ALBAR AND NORAH AL-SALEH

New York, 1982, Translated from the Japanese by the author. MR 82k:20001c. Zbl 472.20001.

Albar: Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia

AL-SALEH: DEPARTMENT OF MATHEMATICS, COLLEGE OF GIRLS, DAMMAM, SAUDI ARABIA

Advances in **Operations Research**

The Scientific World Journal

Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

