ON A FOUR-GENERATOR COXETER GROUP

MUHAMMAD A. ALBAR

(Received 4 December 1999)

ABSTRACT. We study one of the 4-generator Coxeter groups and show that it is SQ-universal (SQU). We also study some other properties of the group.

Keywords and phrases. Group presentation, Reidemeister-Schreier process, Coxeter group, SQ-universality.

2000 Mathematics Subject Classification. Primary 20F05.

1. Introduction. We consider the Coxeter group P given by the presentation

$$P = \langle x_1, x_2, x_3, x_4 \mid x_1^2 = x_2^2 = x_3^2 = x_4^2 = (x_1x_2)^3 = (x_2x_3)^3 = (x_1x_3)^3 = (x_1x_4)^3 = (x_3x_4)^3 = (x_2x_3)^3 = e \rangle. \quad (1.1)$$

The Coxeter graph of this group is clearly just a combinatorial tetrahedron:

We observe that each face is the graph of the Euclidean triangle group $\triangle(3, 3, 3)$ which is an affine Weyl group and this contains a nilpotent subgroup of finite index. The group P is infinite and it will be interesting to see its largeness by answering whether it is SQ-universal or not.

2. SQ-universality. We let S_3 be the symmetric group of degree 3. Thus

$$S_3 = \langle y_1, y_2 \mid y_1^2 = y_2^2 = (y_1y_2)^3 = e \rangle. \quad (2.1)$$

We consider the map $\theta : P \to S_3$ defined by

$$\theta(x_1) = y_1, \quad \theta(x_2) = y_2, \quad \theta(x_3) = \theta(x_4) = y_1y_2y_1. \quad (2.2)$$

It is easy to see that θ is an epimorphism and $P/\ker \theta \cong S_3$. A Schreier transversal for S_3 in P is $\{ e, x_1, x_2, x_1x_2, x_2x_1, x_1x_2x_1 \}$. A straightforward application of the
Reidemeister-Schreier process gives the following presentation for \(\ker \vartheta \):

\[
\ker \vartheta = \langle a, b, c, d \mid (ad)^3 = (bc)^3 = (abcd)^3 = e \rangle. \tag{2.3}
\]

Letting \(a = d^{-1} \) and \(b = c^{-1} \), we see that \(\ker \vartheta \) is mapped homomorphically onto the free group of rank 2, \(F_2 \). Hence \(\ker \vartheta \) is SQU. Since the index of \(\ker \vartheta \) in \(P \) is finite (6), we get that \(P \) is also SQU [4].

3. The growth series. Let \((P, X) \) be a Coxeter system and let \(Y \subseteq X \). We denote the subgroup of \(P \), generated by \(Y \), by \(P_Y \). Then \((W_Y, Y) \) is also a Coxeter system.

In Bourbaki [2, Section 1 of Chapter 4], Exercise 26 gives the following formula for computing the growth series of \(P \) (word growth in the sense of Milner and Gromov):

\[
\sum_{Y \subseteq X} \frac{(-1)^{|Y|}}{P_Y(t)} = \begin{cases}
\frac{t^m}{P(t)} & \text{if } P \text{ is finite}, \\
0 & \text{if } P \text{ is infinite}.
\end{cases} \tag{3.1}
\]

In the formula, \(G(t) \) is the growth series of \(G \), \(m \) is the length of the unique element of \(P \) of maximal length.

We use (3.1) to compute \(P(t) \). We compute \(P(t) \) in steps corresponding to the cardinality of \(Y \):

- \(|Y| = 0\) is the trivial subgroup with growth series \(y_0 = 1 \).
- \(|Y| = 1\) four cyclic subgroups of order 2 with growth series \(y_1 = 1 + t \).
- \(|Y| = 2\) six dihedral subgroups of order 6 with growth series \(y_2 = (1 + t)(1 + t + t^2) \).
- \(|Y| = 3\) three affine subgroups with growth series given by \(1/\gamma - 3/\gamma_1 + 3/\gamma_2 - 1/\gamma_3 = 0 \), that is, \(y_3 = (1 + t + t^2)/(1 - t)^2 \).
- \(|Y| = 4\) the whole group with growth \(y_4(t) = P(t) \) given by \(1/\gamma - 4/\gamma_1 + 6/\gamma_2 - 4/\gamma_3 + 1/\gamma_4 = 0 \), that is, \(y_4 = (1 + t)(1 + t + t^2)/(1 - t)(1 - t - 3t^2) \).

The growth coefficients \(c_n \) are given by the linear recurrence \(c_0 = 1, c_1 = 4, c_2 = 12, c_3 = 30, c_n = 2c_{n-1} + 2c_{n-2} - 3c_{n-3}, n \geq 4 \) (see [3]). We observe from the growth series \(y_4 \) that zeros of the denominator are not on the unit circle. This implies that \(P \) has no nilpotent subgroup of finite index—in accordance with the fact that \(P \) is SQU.

It is possible to show that the group \(P \) and the Geisking group \(G = \langle x, y \mid x^2 y^2 = xy \rangle \) are isometric and hence \(y_4 \) is also the growth series of \(G \) (see [3]). In [1], it appears that the two Coxeter groups \(T_n \) and \(S_n \) are also isometric and so have the same growth series.

4. The commutator subgroup. Using the Reidemeister-Schreier process, we get the following presentation for \(P' \):

\[
P' = \langle x, y, z \mid x^3 = y^3 = z^3 = (xy)^3 = (xz)^3 = (yz^{-1})^3 = e \rangle. \tag{4.1}
\]

We use \(P' \) to show that \(P \) is SQU in a different method. Let \(K \) be the normal closure of the elements \(xy^{-1}, xz^{-1}, yz^{-1} \) in \(P' \). The group \(K \) has index 3 in \(P' \). Using the Reidemeister-Schreier process, we get the following presentation for \(K \):

\[
K = \langle u_1, u_2, u_3, v_1, v_2, v_3 \mid u_1^2 = v_1^2 = v_2^2 = v_3^2 = u_1 u_2 u_3 \quad = u_1 u_3 u_2 = v_1 v_2 v_3 = u_1 v_2 u_3 v_1 u_2 u_3 = e \rangle. \tag{4.2}
\]
Letting $u_3 = v_3 = e$, we see that K is mapped homomorphically onto $Z \ast Z_3$. Since $Z \ast Z_3$ is SQU (see [4]), therefore K is SQU. Since K is of finite index in P' and P' is of finite index in P, we get that P is SQU.

Acknowledgement. The author thanks King Fahd University of Petroleum and Minerals for supporting him in his research.

References

MUHAMMAD A. ALBAR: DEPARTMENT OF MATHEMATICAL SCIENCES, KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS, DHAHRAAN 31261, SAUDI ARABIA
Submit your manuscripts at http://www.hindawi.com