A NOTE ON COMMUTATIVITY OF NONASSOCIATIVE RINGS

M. S. S. KHAN

(Received 31 December 1998 and in revised form 16 May 1999)

Abstract. A theorem on commutativity of nonassociate ring is given.
Keywords and phrases. Rings with unity, commutativity of rings, nonassociative rings.
2000 Mathematics Subject Classification. Primary 17A30; Secondary 16 Y30.

In 1968, Johnsen, Outcalt, and Yaqub [3] have established that a nonassociative ring R with identity 1 satisfying the relation $(x y)^{2}=x^{2} y^{2}$ for every x and y in R, is commutative. Gupta [2] has shown that if R is a nonassociative 2 -torsion free ring with unity 1 satisfying $(x y)^{2}=(y x)^{2}$ for all x, y in R, then R is commutative. Later, Yuanchun [4] proved that a Baer-semisimple ring R is commutative if and only if $(x y)^{2}-x y^{2} x$ is central. The existence of noncommutative ring R with $R^{2} \subseteq Z(R)$, center of R, rules out the possibility that $(x y)^{2}-x y^{2} x \in Z(R)$ might yield commutativity even in associative rings. As an example, consider $A_{3}=\left\{\left(a_{i j}\right) / a_{i j}\right.$ are integers with $\left.a_{i j}=0, i \geq j\right\}$. Then A_{3} is a noncommutative nilpotent ring of index 3 in which $(x y)^{2}-x y^{2} x$ is central for all x, y in A_{3}.
This naturally gives rise to the following question: what additional conditions are needed to insure the commutativity of R when R is an arbitrary ring? With this motivation, Ashraf, Quadri, and Zelinsky [1] established the following result.

Theorem 1. Let R be an associative ring with unity 1 satisfying $(x y)^{2}=y x^{2} y$ for all x, y in R, then R is commutative.

They used very complicated combinatorial arguments. In this connection we prove the following results.

Theorem 2. Let R be a nonassociative ring with unity 1 satisfying $(x y)^{2}=\left(x y^{2}\right) x$ for all x, y in R. Then R is commutative.

Proof. Replacing $y+1$ for y in $(x y)^{2}=\left(x y^{2}\right) x$, we obtain

$$
\begin{equation*}
(x(y+1))^{2}=\left(x(y+1)^{2}\right) x, \quad \text { which yields } x(x y)=(x y) x . \tag{1}
\end{equation*}
$$

Repeating this argument for $x+1$ in place of x, equation (1) gives

$$
\begin{equation*}
x(x y)+x y=(x y) x+y x \tag{2}
\end{equation*}
$$

Thus equation (2) together with equation (1), shows that R is commutative.
Similarly, we can prove the following theorem.

Theorem 3. Let R be a nonassociative ring with unity 1 satisfying $(x y)^{2}=\left(y x^{2}\right) y$ for all x, y in R. Then R is commutative.

If we drop the restriction of unity 1 in the hypothesis, R may be badly noncommutative.

Example. Let

$$
R=\left\{\alpha I+B \left\lvert\, I=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{3}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right., B=\left(\begin{array}{ccc}
0 & \beta & \gamma \\
0 & 0 & \delta \\
0 & 0 & 0
\end{array}\right), \alpha, \beta, \gamma, \delta \in Z_{p}\right\},
$$

p is a prime such that p / n if n odd or $2 p / n$ if n even, and Z_{p} is the ring of integers modulo p. Then $B^{3}=0$, for $n \geq 3$ and

$$
\begin{equation*}
(\alpha I+B)^{n}=\alpha^{n} I+n \alpha^{n-1} B+\frac{n(n-1)}{2!} \alpha^{n-2} B^{2}+\cdots=\alpha^{n} I, \tag{4}
\end{equation*}
$$

because $n=0$ and $n(n-1) / 2!=0$ in Z_{p}, where p / n and $2 p / n(n-1)$.
However, R need not be commutative.
Acknowledgement. The author is thankful to the learned referee for the useful comments.

References

[1] M. Ashraf, M. A. Quadri, and D. Zelinsky, Some polynomial identities that imply commutativity for rings, Amer. Math. Monthly 95 (1988), no. 4, 336-339. MR 89c:16045. Zbl 643.16021.
[2] R. N. Gupta, A note on commutativity of rings, Math. Student 39 (1971), 184-186. MR 48 6192. Zbl 271.17003.
[3] E. C. Johnsen, D. L. Outcalt, and A. Yaqub, An elementary commutativity theorem for rings, Amer. Math. Monthly 75 (1968), 288-289. MR 37\#1417. Zbl 162.33602.
[4] G. Yuanchun, Some commutativity theorems of rings, Acta Sci. Natur. Univ. Jilin 3 (1983), 11-18.

Khan: Department of Mathematics and Computer Science University of Leicester, Leicester, LE1 7RH, ENGLAND, UK

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
$\xrightarrow{\square}$
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

