RECAPTURING SEMIGROUP COMPACTIFICATIONS OF A GROUP
FROM THOSE OF ITS CLOSED NORMAL SUBGROUPS

M. R. MIRI and M. A. POURABDOLLAH

(Received 8 January 1998 and in revised form 20 June 1998)

Abstract. We know that if \(S \) is a subsemigroup of a semitopological semigroup \(T \), and \(\mathcal{F} \) stands for one of the spaces \(\mathcal{A}, \mathcal{W}, \mathcal{M}, \mathcal{D}, \mathcal{E} \) or \(\mathcal{F} \mathcal{C} \), and \((\epsilon, T^\mathcal{F}) \) denotes the canonical \(\mathcal{F} \)-compactification of \(T \), where \(T \) has the property that \(\mathcal{F}(S) = \mathcal{F}(T) |_S \), then \((\epsilon |_S, \epsilon(S)) \) is an \(\mathcal{F} \)-compactification of \(S \). In this paper, we try to show the converse of this problem when \(T \) is a locally compact group and \(S \) is a closed normal subgroup of \(T \). In this way we construct various semigroup compactifications of \(T \) from the same type compactifications of \(S \).

Keywords and phrases. Semigroup (\(\mathcal{P} \)) compactification, conjugation invariance.

2000 Mathematics Subject Classification. 43A60.

1. Introduction. For notation and terminology we follow Berglund et al. [2], as much as possible. Thus a topological semigroup is a semigroup \(S \) that is a Hausdorff topological space, the multiplication \((s, t) \rightarrow st : S \times S \rightarrow S \) being continuous. \(S \) is called a semitopological semigroup if the multiplication is separately continuous, i.e., the maps \(\lambda_s : t \rightarrow st \) and \(\rho_s : t \rightarrow ts \) from \(S \) into \(S \) are continuous for each \(s \in S \). For \(S \) to be right topological only, the maps \(\rho_s \) are required to be continuous. Let \(G \) denote a locally compact group, and \(N \) is a closed normal subgroup of \(G \). A semigroup compactification of \(G \) is a pair \((\varphi, X) \), where \(X \) is a compact right topological semigroup with identity 1, and \(\varphi : G \rightarrow X \) is a continuous homomorphism with \(\varphi(G) = X \), and \(\varphi(G) \subset \Lambda(X) = \{ x \in X | \lambda_x : X \rightarrow X \text{ is continuous} \} ; \Lambda(X) \) is called the topological center of \(X \). When there is no risk of confusion we often refer to \((\varphi, X) \), or even to \(X \), as a compactification of \(G \).

A homomorphism from a compactification \((\varphi, X) \) of \(S \) to a compactification \((\varphi, Y) \) of \(S \) is a continuous function \(\theta : X \rightarrow Y \) such that \(\theta \circ \varphi = \varphi \). Then, \(Y \) is called a factor of \(X \), and \(X \) is an extension of \(Y \). A compactification with a given property \(P \) (such as that of being a semitopological semigroup or a topological group) is called a \(P \)-compactification. A universal \(P \)-compactification of \(S \) is a \(P \)-compactification which is an extension of every \(P \)-compactification of \(S \) (see [1, 2, 3]).

The \(C^* \)-algebra of all bounded continuous complex-valued functions on \(G \) is denoted by \(\mathcal{C}(G) \) with left and right translation operators, \(L_s \) and \(R_s \), defined for all \(s \in G \) by \(L_s f = f \circ \lambda_s \) and \(R_s f = f \circ \rho_s \). If \(\mathcal{A} \) is a \(C^* \)-subalgebra of \(\mathcal{C}(G) \) containing the constant functions, we denote by \(G^\mathcal{A} \) the spectrum of \(\mathcal{A} \) furnished with Gelfand topology (i.e., the weak* topology induced from \(\mathcal{A}^* \)); the natural map \(\epsilon : G \rightarrow G^\mathcal{A} \) is defined by \(\epsilon(s) f = f(s) \). When \(\mathcal{A} \) is left translation invariant (i.e., \(L_s f \in \mathcal{A} \) for all \(s \in G \) and \(f \in \mathcal{A} \)) we can define an action of \(G \) on \(G^\mathcal{A} \) by \((s, \nu) \rightarrow \epsilon(s) \nu \), where \((\epsilon(s) \nu)(f) = \nu(L_s f) \). Right
translation invariance and \(v \in \mathfrak{e}(s) \) are analogously defined (see [5, 7]).

A left translation invariant \(C^* \)-subalgebra of \(\mathfrak{e}(G) \) containing the constant functions is called left \(m \)-introverted if the function \(s \to (\nu f)(s) = v(L_s f) \) is in \(\mathfrak{d} \) for all \(f \in \mathfrak{d} \) and \(v \in \mathfrak{G} \); in this situation the product of \(\mu, \nu \in \mathfrak{G} \) can be defined by \((\mu \nu)(f) = \mu(\nu f) \). This makes \((e, \mathfrak{G}) \) a semigroup compactification of \(G \). The spaces of almost periodic, weakly almost periodic, left continuous and distal functions, which are denoted by \(\mathfrak{d} \mathfrak{A}, \mathfrak{WdA}, \mathfrak{L}, \mathfrak{A}, \) respectively, are left \(m \)-introverted. We refer the reader to [2, 5] for the one-to-one correspondence between compactifications of \(G \) and left \(m \)-introverted \(C^* \)-subalgebras of \(\mathfrak{e}(G) \), and also for a discussion of properties \(P \) of compactifications and associated universal mapping properties.

2. Main results. Let \(G \) be a locally compact group with a closed normal subgroup \(N \), and let \((\varphi, X) \) be a compactification of \(N \). Let \(\sim \) be the equivalence relation on \(G \times X \) with equivalence classes \(\{(sr^{-1}, \varphi(r)x) \mid r \in N\} \). Thus

\[
(s, x) \sim (t, y) \text{ if and only if } t^{-1}s \in N \text{ and } \varphi(t^{-1}s)x = y.
\]

\(\pi : G \times X \to (G \times X)/\sim \) will denote the quotient map. Clearly \(\pi \) is one-to-one on \(\{e\} \times X \), so we can identify \(X \equiv \{e\} \times X \) with \(\pi(\{e\} \times X) \). It is important that \((G \times X)/\sim \) is locally compact and Hausdorff. In this connection we have the following lemmas, which are stated in [6].

Lemma 2.1.

(i) The graph of \(\sim \) is closed.

(ii) \(\pi : (G \times X) \to (G \times X)/\sim \) is an open mapping.

(iii) Let \(K \) be a compact subset of \(G \) and let \(L = KN \), then \(\pi(K \times X) = \pi(L \times X) \).

This lemma has the following easy consequences.

Lemma 2.2. The quotient space \((G \times X)/\sim \) is locally compact and Hausdorff.

Lemma 2.3. If \(G = KN \) for some compact subset \(K \) of \(G \), then \((G \times X)/\sim \) is compact.

Let \(\mu : G \to (G \times X) \) be defined by \(\mu(s) = (s, 1) \), where 1 is the identity of \(X \). Then, \(\pi \circ \mu : G \to (G \times X)/\sim \) is continuous as a composition of two continuous functions, and \(\pi \circ \mu(G) = \pi(G \times \varphi(N)) \), since for each \((s, \varphi(r)) \in G \times \varphi(N), (s, \varphi(r)) \sim (sr, 1) \), and \(\pi \circ \mu(sr) = \pi(sr, 1) = \pi(s, \varphi(r)) \). Furthermore, if \(\varphi \) is a homeomorphism of \(N \) into \(X \), then \(\pi \circ \mu \) is also a homeomorphism.

We now define \(\sigma_s(r) = s^{-1}rs \) for \(s \in G \) and \(r \in N \), it is obvious that \(\sigma_s : N \to N \) is a surjective homomorphism for each \(s \in G \).

Definition 2.4. A \(\mathcal{P} \)-compactification \((\varphi, X) \) of \(N \) is said to be a conjugation invariant \(\mathcal{P} \)-compactification of \(N \) if \((\varphi \circ \sigma_s, X) \) is a \(\mathcal{P} \)-compactification of \(N \) for each \(s \in G \). When we write \(\mathcal{P} \)-compactification instead of \(P \)-compactification, this means that we want to emphasize its conjugation invariance, see Corollary 2.7.

Remark. The reader may have noticed that, the definition of \(\mathcal{P} \)-conjugation invariant compactification is different from the compatibility of a compactification in [6], because if \(\mathcal{P} \) is a property of compactifications that is not invariant under homomorphism and \((\psi, X) \) is a \(\mathcal{P} \)-compactification of \(N \) compatible with \(G \), then \((\psi \circ \sigma_s, X) \) is a
compactification of N which may not be a \mathcal{P}-compactification of N, thus (ψ, X) can fail to be a \mathcal{P}-conjugation invariant compactification of N. On the other hand, if (ψ, X) is a \mathcal{P}-conjugation invariant compactification of N, i.e., $(\psi \circ \sigma_s, X)$ is a \mathcal{P}-compactification of N for each $s \in G$, it is not always true that σ_s has an extension from X to X.

Lemma 2.5. Let G be a locally compact group, N a closed normal subgroup, and (φ, X) a conjugation invariant universal \mathcal{P}-compactification of N, then each σ_s can be extended continuously to a mapping from X to X.

Proof. By conjugation invariance of (φ, X), $(\varphi \circ \sigma_s, X)$ is a \mathcal{P}-compactification of N, and by universality of (φ, X) there exists a continuous homomorphism $\nu : X \to X$ such that $\varphi \circ \sigma_s = \nu \circ \varphi$ for each $s \in N$. This ν is the continuous function extending σ_s.

It is obvious that if (φ, X) is a conjugation invariant universal \mathcal{P}-compactification of N, then each σ_s determines a continuous transformation of X, for which we use the same notation σ_s.

Corollary 2.6. Let N be contained in the center of G, then each compactification (φ, X) of N is conjugation invariant.

Corollary 2.7. Let (ϵ, N^φ) denote a universal \mathcal{P}-compactification of N and let \mathcal{P} be a purely algebraic property, then (ϵ, N^φ) is a conjugation invariant \mathcal{P}-compactification of N.

Notice our deviation from the usual notation.

Corollary 2.8. Let (φ, X) be an \mathcal{F}-compactification of N, where \mathcal{F} stands for either of the spaces \mathcal{AP} and \mathcal{WAP}, then (φ, X) is a conjugation invariant \mathcal{F}-compactification of N.

Lemma 2.9. Let (φ, X) be a conjugation invariant \mathcal{P}-compactification of N, then for each $s \in G$, σ_s is a continuous automorphism of X.

Proof. σ_s is a homeomorphism of X onto X (since $\sigma_s(N) = N$ and $\sigma_s \sigma_s^{-1} = I$, the identity mapping). Now, we show that σ_s is a homomorphism. Obviously,

$$\sigma_s(xy) = \sigma_s(x) \sigma_s(y) \quad \text{for each} \ x, y \in \varphi(N). \quad (2.2)$$

Since X is a right topological semigroup with $\varphi(N) \subset \Lambda(X)$, we conclude that (2.2) holds for each $x \in \varphi(N), y \in X$. Then it follows that (2.2) holds for all $x, y \in X$, as required.

If N is a closed subgroup of G, and X is a conjugation invariant \mathcal{P}-compactification of N, then we can define a semidirect product structure on $G \times X$ by $(s, x)(t, y) = (st, \sigma_t(x)y)$, where σ_t is the conjugation map.

Lemma 2.10. Let G be a locally compact group with a closed normal subgroup N, and let (φ, X) be a conjugation invariant \mathcal{P}-compactification of N, then $G \times X$ is a right topological semigroup. Furthermore, the map

$$(s, r) \mapsto (st, \varphi(\sigma_t(r)y)) : (G \times N) \times (G \times X) \to G \times X \quad (2.3)$$
is continuous, and the equivalence relation \sim is a congruence on $G \times X$.

Proof. The continuity is an easy conclusion of Ellis theorem. Now, we show that \sim is a congruence. Suppose $(s,x) \sim (t,y)$ and $(u,z) \in G \times X$, then $t^{-1}s \in N$ and $\phi(t^{-1}s)x = y$, so $(s,x)(u,z) = (su,\sigma_u(x)z)$ and $(t,y)(u,z) = (tu,\sigma_u(y)z)$.

On the other hand, $(su,\sigma_u(x)z) \sim (tu,\sigma_u(y)z)$ since $(tu)^{-1}su = u^{-1}t^{-1}su \in N$ and

$$\phi((tu)^{-1}su)\sigma_u(x)z = \sigma_u(y)z,$$

thus

$$(s,x)(u,z) \sim (t,y)(u,z).$$

Similarly

$$(u,z)(s,x) \sim (u,z)(t,y).$$

The following theorem is an easy consequence of the previous corollaries and lemmas.

Theorem 2.11. Let G be a locally compact group with a closed normal subgroup N, and let (ϕ,X) be a conjugation invariant compactification of N. Then $(G \times X)/\sim$ is a locally compact right topological semigroup, and a compactification of G, provided that $G = KN$ for some compact subset K of G.

Theorem 2.12. The compactification $(\pi \circ \mu,(G \times X)/\sim)$ of G described in the previous theorem has the following universal property; let (φ,Y) be a semigroup compactification of G such that $\varphi|N$ extends to a continuous homomorphism $\phi : X \to Y$ in such a way that for each $s \in G$ and $x \in X$,

$$\phi(\sigma_s(x)) = \varphi(s^{-1})\phi(x)\varphi(s),$$

then there exists a (unique) continuous homomorphism $\theta : (G \times X)/\sim \to Y$ such that $\theta \circ \pi \circ \mu = \phi$.

Proof. We define $\theta_0 : G \times N \to Y$ by $\theta_0(s,x) = \varphi(s)\phi(x)$, then θ_0 is a continuous homomorphism which is constant on \sim-classes of $G \times X$. Now we take $\theta = \theta_0 \circ \pi$.

Theorem 2.13. Let N be a closed normal subgroup of G with $G = KN$ for some compact subset K of G. Suppose that \mathfrak{P} is a property of compactifications such that $(\varphi|N,\overline{\varphi(N)})$ is a \mathfrak{P}-compactification of N whenever $(\varphi,\overline{\varphi(G)})$ is a \mathfrak{P}-compactification of G. Suppose that $(\epsilon,N^\#)$ is a conjugation invariant universal \mathfrak{P}-compactification of N. If $(G \times N^\#)/\sim$ has the property \mathfrak{P}, then $(G \times N^\#)/\sim$ is the universal \mathfrak{P}-compactification of G.

Proof. We show that $(G \times N^\#)/\sim$ is the universal \mathfrak{P}-compactification of G. Let (φ,X) be a \mathfrak{P}-compactification of G such that $(\varphi|N,\overline{\varphi(N)})$ is a \mathfrak{P}-compactification of N, by the universal property of $N^\#$ there exists a continuous homomorphism $\phi : N^\# \to X$ such that $\phi \circ \epsilon = \varphi|N$, and we have $\phi(\sigma_s(x)) = \varphi(s^{-1})\phi(x)\varphi(s)$ for all $s \in G$ and $x \in N^\#$. Notice that we use two different scripts of the same letter to emphasize
their connection. Indeed, for fixed \(s \in G \), both sides represent homomorphisms of \(N^p \) into \(X \), both sides are continuous in \(x \), and coincide on the dense subspace \(N \). Now the map \(\varphi \times \phi : (G \times N^p) \to X \) defined by \((\varphi \times \phi)(s,x) = \varphi(s)\phi(x)\) is continuous and a homomorphism, since

\[
(\varphi \times \phi)((s,x)(t,y)) = (\varphi \times \phi)(st, \sigma_t(x)y) = \varphi(st)\phi(\sigma_t(x)y) = \varphi(s)\varphi(t)\phi(\sigma_t(x))\phi(y) = \varphi(s)\phi(x)\varphi(t)\phi(y) = \varphi \times \phi(s,x)\varphi \times \phi(t,y).
\]

(2.8)

Also \(\varphi \times \phi \) is constant on \(\sim \)-classes, thus the quotient of \(\varphi \times \phi \) gives a continuous homomorphism from \((G \times N^p)/\sim \) to \(X \).

Corollary 2.14. Let \(N \) be a closed normal subgroup of \(G \) with \(G = KN \) for some compact subset \(K \) of \(G \), then

(i) \((G \times N^p)/\sim \) is the universal \(\mathcal{L}^\mathcal{L} \)-compactification of \(G \).

(ii) \((G \times N^3)/\sim \) is the universal \(\mathcal{D} \)-compactification of \(G \).

Proof. (i) Since \((G \times N^p)/\sim \) is a compactification of \(G \), by Theorem 2.13, \((G \times N^p)/\sim \) is the universal \(\mathcal{L}^\mathcal{L} \)-compactification of \(G \).

(ii) Since \(N^3 \) is a group, \((G \times N^3)/\sim \), the quotient by a congruence of a semidirect product of groups is also a group, thus by Theorem 2.13 \((G \times N^3)/\sim \) is the universal \(\mathcal{D} \)-compactification of \(G \).

In some situations, we want to be able to conclude that the right topological semigroup \((G \times X)/\sim \) of Theorem 2.13 is also left topological. The following lemma can be helpful in this connection.

Lemma 2.15. Let \(G \) be a locally compact group with a closed normal subgroup \(N \) and let \(X \) be a universal conjugation invariant compactification of \(N \). Suppose that \(G = KN \) for some compact subset \(K \) of \(G \) and \(s \rightarrow \sigma_s(x) : G \times X \to X \) is continuous for all \(x \in N \). Then \((G \times X)/\sim \) is semitopological.

Proof. Since \((s,x) \rightarrow \sigma_s(x) : G \times X \to X \) is a group action, it is continuous by Ellis theorem, thus \(G \times X \) is semitopological semigroup and also \((G \times X)/\sim = \pi(G \times X) \).

Corollary 2.16. Let \(G \) be a locally compact group with a closed normal subgroup \(N \), \(G = KN \) for some compact subset \(K \) of \(G \) and suppose that \(s \rightarrow \sigma_s(x) : G \to N^{W_{\mathfrak{a}^p}} \) is continuous for all \(x \in N^{W_{\mathfrak{a}^p}} \), then \((G \times N^{W_{\mathfrak{a}^p}})/\sim \) is the universal semitopological semigroup compactification of \(G \).

Proof. Since \(N^{W_{\mathfrak{a}^p}} \) is a semitopological semigroup, by Lemma 2.15, \((G \times N^{W_{\mathfrak{a}^p}})/\sim \) is semitopological semigroup. Thus by Theorem 2.13, \((G \times N^{W_{\mathfrak{a}^p}})/\sim \) is the universal semitopological semigroup compactification of \(G \).

A similar argument yields the following corollary.

Corollary 2.17. Let \(G \) be a locally compact group with a closed normal subgroup \(N \), \(G = KN \) for some compact subset \(K \) of \(G \) and suppose that \(s \rightarrow \sigma_s(x) : G \to N^{\mathfrak{a}^p} \) is
continuous for all \(x \in N^{sp} \), then \((G \times N^{sp})/\sim\) is the universal topological semigroup compactification of \(G \).

Lemma 2.18. Let \(N \) be a closed normal subgroup of \(G \) with \(G = KN \) for some compact subset \(K \) of \(G \). Let \(\mathcal{F} \) and \(\mathcal{G} \) be left \(m \)-introverted subalgebras of \(\mathcal{C}(N) \) and \(\mathcal{C}(G) \), respectively. Then \(N^{sp} \) is a conjugation invariant \(\mathcal{F} \)-compactification of \(N \) if and only if
\[\mathcal{G}|_{N} = \mathcal{F} \text{ and } (G \times N^{sp})/\sim \text{ is the } \mathcal{G} \text{-compactification of } G. \]

Proof. Let \(\mathcal{G}|_{N} = \mathcal{F} \), we define \(\sigma_{s}(x)(f) \) for \(s \in G, x \in N^{sp} \) and \(f \in \mathcal{F} \) by \(\sigma_{s}(x)(f) = x(g \circ \sigma_{s}|_{N}) \), where \(g \in \mathcal{G}, g|_{N} = f \). Since every such extension \(g \) yields a \(g \circ \sigma_{s} \) agreeing with \(f \circ \sigma_{s} \) on \(N \), \(\sigma_{s}(x) \) is well defined. So \(N^{sp} \) is a conjugation invariant \(\mathcal{F} \)-compactification of \(N \).

Conversely, since the quotient map \(\pi: G \times N^{sp} \to (G \times N^{sp})/\sim \) is injective on the compact set \(N^{sp} \cong \{e\} \times N^{sp} \), it gives a topological isomorphism of \(N^{sp} \) into \((G \times N^{sp})/\sim \cong G^{sp} \).

Corollary 2.19. Let \(G \) be a compact group with a closed normal subgroup \(N \), then
(i) \((G \times N^{sp})/\sim \cong G^{sp} \).
(ii) \((G \times N^{sp})/\sim \cong G^{sp} \).

Corollary 2.20. Let \(N \) be a closed normal subgroup of a locally compact group \(G \) contained in the center of \(G \), then
\[(G \times N^{sp})/\sim \cong G^{sp}. \] (2.9)

The next example shows that the continuity of \(s \to \sigma_{s}(x) \) in Corollary 2.14 and Lemma 2.15 is an essential condition.

Example 2.21. Let \(G = \mathbb{C} \times \mathbb{T} \) be the Euclidean group of the plane with \((z, w)(z_{1}, w_{1}) = (z + wz_{1}, ww_{1})\) and \(N = \mathbb{C} \times \{1\} \), then \(N \) is a closed normal subgroup of \(G \) and \(\mathcal{A}(G)|_{N} \) is a proper subset of \(\mathcal{A}(N) \) \([4, 8]\), so by Lemma 2.15 \((G \times \mathbb{C}^{sp})/\sim \) is not the universal \(\mathcal{A} \)-compactification of \(G \), \(\mathbb{C}^{sp} \) is a conjugation invariant compactification of \(N \), so the continuity of \(s \to \sigma_{s} \) must fail to hold Lemma 2.15. From \([4, 8]\), we can similarly conclude that \((G \times \mathbb{C}^{sp})/\sim \) is not the universal \(W \mathcal{A} \)-compactification of \(G \) and that the continuity of \(s \to \sigma_{s} \), as required by Corollary 2.14, also fails to hold.

References

MIRI: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BIRJAND, BIRJAND, IRAN

POURABDOLLAH: DEPARTMENT OF MATHEMATICS, FERDOWSI UNIVERSITY OF MASHHAD, MASHHAD, IRAN

E-mail address: pourabd@science2.um.ac.ir
Submit your manuscripts at http://www.hindawi.com