FIXED POINTS VIA A GENERALIZED LOCAL COMMUTATIVITY

GERALD F. JUNGCK

(Received 24 May 2000)

Abstract. Let $g : X \to X$. The concept of a semigroup of maps which is “nearly commutative at g” is introduced. We thereby obtain new fixed point theorems for functions with bounded orbit(s) which generalize a recent theorem by Huang and Hong, and results by Jachymski, Jungck, Ohta, and Nikaido, Rhoades and Watson, and others.

2000 Mathematics Subject Classification. Primary 47H10, 54H25.

1. Introduction. By a semi-group of maps we mean a family H of self maps of a set X which is closed with respect to composition of maps $(f \circ g = fg)$ and includes the identity map $i_d(x) = x$, for $x \in X$. We often associate with a function $g : X \to X$ following semi-groups:

$$O_g = \{ g^n | n \in \mathbb{N} \cup \{0\} \},$$

(1.1)

where \mathbb{N} is the set of positive integers and $g^0 = i_d$, and

$$C_g = \{ f : X \to X | fg = gf \}.$$

(1.2)

A quick check confirms that C_g is a semi-group.

If H is a semi-group of self maps of a set X and $a \in X$, $H(a) = \{ h(a) | a \in H \}$. In particular, if $H = O_g$, $O_g(a) = \{ g^n(a) | n \in \mathbb{N} \cup \{0\} \}$ and is called the orbit of g at a.

In general, Lemma 3.2 and some theorems in Section 3 will be stated in the context of semi-metric spaces. A semi-metric on a set X is a function $d : X \times X \to [0, \infty)$ such that $d(x, y) = d(y, x)$ for $x, y \in X$ and $d(x, y) = 0$ if and only if $x = y$. A semi-metric space is a pair $(X; d)$, where X is a topological space and d is a semi-metric on X. The topology $t(d)$ on X is generated by the sets $S(p, \epsilon) = \{ x | d(x, p) < \epsilon \}$ with the requirement that p is an interior point of $S(p, \epsilon)$. A sequence $\{ x_n \}$ in X converges in $t(d)$ to $p \in X$ (denoted as $x_n \to p$) if and only if $d(x_n, p) \to 0$. We let $t(d)$ be T_2 (Hausdorff) to ensure unique limits. Thus, a metric space (X, d) is a semi-metric space having the triangle inequality. For further details on semi-metric spaces, see, for example, [1, 4, 6].

If $g : X \to X$, a semi-metric space $(X; d)$ is complete (g-orbitally complete) if and only if every Cauchy sequence (in the usual sense) in X $(O_g(x))$ converges to a point of X. g is continuous at $p \in X$ if and only if whenever $\{ x_n \}$ is a sequence in X and $x_n \to p$, then $f(x_n) \to f(p)$. And if S is a bounded subset of X, $\delta(S) = \sup \{ d(x, y) | x, y \in S \}$.

We are now ready to focus on the intent of this paper, namely, to introduce a generalized “local commutativity” and to demonstrate the concept’s usefulness.
2. Nearly commutative semi-groups. In [2], a semi-group \(H \) of maps is said to be *near-commutative* if and only if for each pair \(f, g \in H \), there exists \(h \in H \) such that \(fg = gh \). We generalize as follows.

Definition 2.1. A semi-group \(H \) of self maps of a set \(X \) is *nearly commutative* (n.c.) at \(g : X \to X \) if and only if \((f \in H)\) implies that there exists \(h \in H \) such that \(fg = gh \).

Of course, \(O_g \) and \(C_g \) are n.c. at \(g \). Observe also that a *near-commutative semi-group* \(H \) of self maps of a set \(X \) is n.c. at each \(g \in H \). The following provides for each \(a \in (0, \infty) \) an example of a semi-group \(H = S_a \) of self maps which is not near-commutative but is n.c. at a particular \(g : X \to X \).

Example 2.2. Let \(X = [0, \infty) \) and \(a \in (0, \infty) \). Let \(g(x) = ax \) and define

\[
S_a = \{a^n x^n \mid x \in [0, \infty), \ n \in \mathbb{N}, \ m \in \mathbb{N} \cup \{0\}\},
\]

where \(S_a \) is *nearly commutative* (n.c.) at \(g \). For if \(f(x) = a^m x^n \) is a representative element of \(S_a \), then \(fg(x) = f(g(x)) = a^{m+n} x^n \). We want \(h(x) = a^r x^s \in S_a \) such that \(fg = gh \). Now, \(g(h(x)) = a(a^r x^s) = a^{r+1} x^s \), so we can let \(s = n \) and \(r + 1 = m + n \); that is, \(r = m + (n - 1) \). Since \(n \in \mathbb{N} \) and \((n - 1) \), \(m \in \mathbb{N} \cup \{0\} \), \(s \) and \(r \) so designated imply \(h \in S_a \). Thus, \((f \in H = S_a)\) implies that there exists \(h \in H \) such that \(fg = gh \). Since \(i_d \in S_a \), \(S_a \) is clearly a semi-group, and we are finished. On the other hand, \(S_a \) is not a *near-commutative* semi-group. For example, let \(f(x) = a^2 x^2 \) and \(h(x) = a^2 x^3 \). We want \(t(x) = a^r x^s \) such that \(fh = ht \). So we must have \(3s = 6 \) and \((2 + 3r) = 6 \). But then \(r = 4/3 \), and \(r \notin \mathbb{N} \cup \{0\} \).

Now, let \(M_n \) and \(N_n \) denote the set of all \(n \times n \) real matrices and the set of all nonsingular \(n \times n \) real matrices, respectively. Then, both sets \(M_n \) and \(N_n \) are semi-groups of linear transformations \(A : \mathbb{R}^n \to \mathbb{R}^n \) relative to composition of maps (matrix multiplication).

Example 2.3. \(N_n \) is n.c. For if \(A, B \in N_n \), there exists \(C = B^{-1}(AB) \in N_n \) such that \(AB = BC \).

Example 2.4. \(M_n \) is n.c. at any \(B \in N_n \), by **Example 2.3.** But \(M_n \) is not near commutative. For instance, if \(n = 2 \), \(B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \), and \(A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \), there exists no \(2 \times 2 \) matrix \(C \) such that \(AB = BC \).

Now, let \(g : X \to X \). Since any semi-group of self maps which commute with \(g \) is a subset of \(C_g \), we might hope that \(H_g = \{ f : X \to X \mid fg = gh \text{ for some } h : X \to X \} \) would be a maximal semi-group which is n.c. at \(g \). However, \(H_g \) so defined need not be n.c. at \(g \)! For example, let \(X = [0, \infty) \), \(g(x) = x/(x + 1) \), and \(f(x) = x/2 \). Then \(h(x) = 2x + 1 \) satisfies \(f(g(x)) = g(h(x)) \) for \(x \in [0, \infty) \). However, there exists no \(k \in H_g \) such that \(g(h(x)) = g(k(x)) \); that is, \(2(x + 1)^{-1} + 1 = (k(x) + 1)^{-1} \) (note that \(x, k(x) \geq 0 \)).

Note that the map \(g(x) = 1/(x + 1) \) was not surjective. So consider the following example.
Example 2.5. Let X be any set and let $g : X \to X$ be surjective. Then the family of all self mappings of X, $\mathcal{F} = \{ f \mid f : X \to X \}$, is n.c. at g. For suppose $f \in \mathcal{F}$; we need $h \in \mathcal{F}$ such that $f g(x) = g h(x)$ for all $x \in X$. So let $a \in X$. Since g is onto, we can choose $x_a \in X$ such that $g(x_a) = f(g(a))$. Choose such an x_a for each $a \in X$ and define $h(a) = x_a$. Then $h : X \to X$ and $g(h(a)) = g(x_a) = f(g(a))$ for $a \in X$; that is, $f g = g h$.

Proposition 2.6. Suppose that H is a semigroup of maps which is n.c. at $g : X \to X$. If $f \in H$ and $n \in \mathbb{N}$, there exists $h_n \in H$ such that $f g^n = g^n h_n$ (i.e., H is n.c. at g^n).

Proof. Let $f \in H$. Since H is n.c. at g, there exists $h_1 \in H$ such that $f g = g h_1$. So suppose that $k \in \mathbb{N}$ such that $f g^k = g^k h_k$ for some $h_k \in H$. Then

$$f g^{k+1} = (f g^k) g = (g^k h_k) g = g^k (h_k g).$$

Since $h_k \in H$, there exists $h_{k+1} \in H$ such that $h_k g = g h_{k+1}$, and therefore (2.2) implies $f g^{k+1} = g^k (g h_{k+1}) = g^{k+1} h_{k+1}$, as desired.

Throughout this paper, P denotes a function $P : [0, \infty) \to [0, \infty)$ which is non-decreasing, and satisfies $\lim_{t \to \infty} P^n(t) = 0$ for $t \in [0, \infty)$. (For example, we could let $P(t) = \alpha t$ for some $\alpha \in (0, 1)$, or $t/(t+1)$.) And throughout this paper, we appeal to the following lemma.

Lemma 2.7. Let H be a semi-group of self maps of a set X and suppose that H is nearly commutative at $g : X \to X$. Let $d : X \times X \to [0, \infty)$. Suppose that for each pair $x, y \in X$ there exists a choice $r = r(\{x, y\})$, $s = s(\{x, y\}) \in H$, and $u, v \in \{x, y\}$ for which

$$d(g x, g y) \leq P(d(u, v)).$$

Then, if $n \in \mathbb{N}$, for each pair $x, y \in X$ there exist $r_n, s_n \in H$ and $u_n, v_n \in \{x, y\}$ such that

$$d(g^n x, g^n y) \leq P^n(d(r_n u_n, s_n v_n)).$$

Proof. By (2.3), inequality (2.4) holds for $n = 1$, so suppose that $n \in \mathbb{N}$ for which (2.4) is true. Then, if $x, y \in X$,

$$d(g^{n+1} x, g^{n+1} y) = d(g(g^n x), g(g^n y)) \leq P(d(r u, s v)), \quad (2.5)$$

where $r, s \in H$ and $u, v \in \{g^n x, g^n y\}$, by (2.3). Specifically, $u = g^n c$, $v = g^n d$, where $c, d \in \{x, y\}$. And since $r, s \in H$, there exist $r', s' \in H$ such that $r g^n = g^n r'$ and $s g^n = g^n s'$, by Proposition 2.6. So (2.4) implies that

$$d(r u, s v) = d(r g^n(c), s g^n(d)) = d(g^n(r' c), g^n(s' d)) \leq P^n(d(r_n u_n, s_n v_n)), \quad (2.6)$$

where $r_n, s_n \in H$ and $u_n, v_n \in \{r' c, s' d\}$. Thus, $r_n u_n \in \{(r_n r') c, (r_n s') d\}$, where $r_n r'$ and $r_n s'$ are elements of H, since H is a semi-group. So $r_n u_n = r_{n+1} u_{n+1}$, where $r_{n+1} \in \{r_n r', r_n s'\}$ (i.e., $r_{n+1} \in H$) and $u_{n+1} \in \{c, d\} \subset \{x, y\}$. Similarly, $s_n v_n = s_{n+1} v_{n+1}$, where $s_{n+1} \in H$ and $v_{n+1} \in \{x, y\}$. Thus, (2.6) implies that

$$d(r u, s v) \leq P^n(d(r_{n+1} u_{n+1}, s_{n+1} v_{n+1})), \quad r_{n+1}, s_{n+1} \in H, u_{n+1}, v_{n+1} \in \{x, y\}. \quad (2.7)$$
But P is nondecreasing, and therefore (2.7) and (2.5) yield
\[
d(g^{n+1}x, g^{n+1}y) \leq P^n(d(r_{n+1}u_{n+1}, s_{n+1}v_{n+1}))
= P^{n+1}(d(r_{n+1}u_{n+1}, s_{n+1}v_{n+1})),
\]
with $r_{n+1}, s_{n+1} \in H$ and $u_{n+1}, v_{n+1} \in \{x, y\}$. So, (2.4) is true for all n by induction. \qed

3. Fixed point theorems

\textbf{Definition 3.1.} Let $(X; d)$ be a semi-metric space and let H be a semi-group of self maps of X. A map $g : X \to X$ is P-contractive relative to H if and only if (2.3) holds. (We will also say, “g is a P-contraction relative to H.”)

\textbf{Lemma 3.2.} Let $(X; d)$ be a T_2 semi-metric space and let H be a semi-group of self maps of X n.c. at $g \in H$. Suppose that g is P-contractive relative to H and that $M \subset X$ such that $B = \cup \{H(c) \mid c \in M\}$ is bounded. Then $d(g^n(x), g^n(y)) \to 0$ uniformly on B as $n \to \infty$. Specifically, if $\epsilon > 0$, there exists $k \in \mathbb{N}$ such that
\[
(n \geq k) \Rightarrow (d(g^n(x), g^n(y)) < \epsilon \forall x, y \in B).
\]

\textbf{Proof.} By hypothesis $\delta(B) < \infty$, $P^n(\delta(B)) \to 0$ as $n \to \infty$. Let $\epsilon > 0$. We can choose $k \in \mathbb{N}$ such that
\[
P^n(\delta(B)) < \epsilon \quad \text{for } n \geq k.
\]

Let $x, y \in B$. If $n \in \mathbb{N}$, since g is P-contractive relative to H, Lemma 2.7 yields $r_n, s_n \in H$ and $u_n, v_n \in \{x, y\}(\subset B)$ such that
\[
d(g^n(x), g^n(y)) \leq P^n(d(r_n u_n, s_n v_n)).
\]
Since $u_n \in B$, there exist $h \in H$ and $c \in M$ such that $u_n = h(c)$. But $r_n, h \in H$, so $r_n h \in H$. Therefore, $r_n u_n = (r_n h)(c) \in H(c) \subset B$. Likewise, $s_n v_n \in B$. But then $d(r_n u_n, s_n v_n) \leq \delta(B)$ and therefore,
\[
P^n(d(r_n u_n, s_n v_n)) \leq P^n(\delta(B)) \quad \text{for } n \in \mathbb{N},
\]
since P is nondecreasing and n is arbitrary. Formulae (3.2), (3.3), and (3.4) imply
\[
d(g^n(x), g^n(y)) < \epsilon \quad \text{for } n \geq k.
\]
Since the choice of k in (3.2) was independent of x and y, (3.5) holds for all $x, y \in B$. \qed

\textbf{Theorem 3.3.} Let $(X; d)$ be a T_2 semi-metric space, and let H be a semi-group of self maps of X which is n.c. at $g \in H$. Suppose that $H(a)$ is bounded for some $a \in X$ and X is g-orbitally complete. If g is a P-contraction relative to H, then $g^n(a) \to c$ for some $c \in X$. If g is continuous at c, $g(c) = c$.

\textbf{Proof.} Since X is g-orbitally complete, to show that $g^n(a) \to c$ for some $c \in X$ it suffices to show that $\{g^n(a)\}$ is a Cauchy sequence.
To this end, let $\epsilon > 0$. Since, $H(a)$ is bounded, Lemma 3.2 with $B = H(a)$ implies that there exists $k \in \mathbb{N}$ such that
\[
 n \geq k \Rightarrow d(g^n(a), g^n(y)) < \epsilon \quad \forall x, y \in H(a).
\] (3.6)
Therefore, if $m > n \geq k, m = n + r$ for some $r \in \mathbb{N}$, and
\[
 d(g^n(a), g^m(a)) = d(g^n(a), g^n(g^r(a))) < \epsilon,
\] (3.7)
since $a, g^r(a) \in H(a)$. We conclude that $\{g^n(a)\}$ is Cauchy, and there exists $c \in X$ such that $d(g^n(a), c) \to 0$ for any sequences $\{x_k\}$ and $\{y_k\}$ in B.

Definition 3.4. Let X and Y be topological spaces. A map $g : X \to Y$ is closed if and only if $g(M)$ is closed in Y whenever M is a closed subset of X.

Theorem 3.5. Let $(X; d)$ be a bounded and complete T_2 semi-metric space, and let H be a semi-group of maps n.c. at some $g \in H$. Suppose that X is g-orbitally complete and there exists $k \in \mathbb{N}$ such that for each pair $x, y \in X$, there exist $r, s \in H$ and $u, v \in \{x, y\}$ for which
\[
 d(g^k(x_k), g^k(y_k)) \leq P(d(ru, sv)).
\] (3.9)

Proof. Let $x \in X$. By Theorem 3.3, $\{g^n(X)\}$ converges to p for some $p \in X$. Moreover, $p \in \cap \{g^n(X) \mid n \in \mathbb{N}\}$. Otherwise, there exists $k \in \mathbb{N}$ such that $p \notin g^k(X)$. Since $g^k(X)$ is closed, there exists $\epsilon > 0$ such that $S(p, \epsilon) \cap g^k(X) = \emptyset$. Thus, $d(g^n(X), p) \geq \epsilon$ for $n \geq k$ since $g^n(X)$ is a subset of $g^k(X)$ for $n \geq k$. This contradicts the fact that $g^n(x) \to p$.

In fact, $\{p\} = \cap \{g^n(X) \mid n \in \mathbb{N}\}$. For if $q \in \cap \{g^n(X) \mid n \in \mathbb{N}\}$, for each $k \in \mathbb{N}$ we can choose $x_k, y_k \in X$ such that $g^k(x_k) = p$ and $g^k(y_k) = q$. So
\[
 d(p, q) = d(g^k(x_k), g^k(y_k)) \to 0,
\] (3.8)
by Lemma 3.2 with $M = X$.

Clearly, (i) implies that p is a fixed point of g, since $g(\{p\}) \subset \{p\}$. Thus, if $x \in X$, $d(g^n(x), p) = d(g^n(x), g^n(p)) \to 0$ as $n \to \infty$, so (iii) holds. Similarly, if q is a fixed point of g, then $d(p, q) = (g^n(p), g^n(q)) \to 0$, so that $q = p$. Thus, p is the only fixed point of g.

In the following we need the triangle inequality, so we require the underlying space to be a metric space.

Theorem 3.6. Let (X, d) be a metric space and let H be a semi-group of self maps of X n.c. at some $g \in H$. Suppose that X is g-orbitally complete and there exists $k \in \mathbb{N}$ such that for each pair $x, y \in X$, there exist $r, s \in H$ and $u, v \in \{x, y\}$ for which
\[
 d(g^kx, g^ky) \leq P(d(ru, sv)).
\] (3.9)
(i) If there exists \(a \in X \) such that \(H(a) \) is bounded, then there exists \(c \in X \) such that \(\lim_{n \to \infty} g^n(a) = c \). If \(h \) is continuous for some \(h \in H \), then \(h(c) = c \). (Specifically, \(g(c) = c \) if \(g \) is continuous at \(c \).)

(ii) If \(H(x) \) is bounded for each \(x \in X \), there exists a unique \(c \in X \) such that \(g^n(x) \to c \) for all \(x \in X \). If \(g \) is continuous at \(c \), \(c \) is a unique common fixed point for all \(h \in H \).

Proof. Suppose that \(H(a) \) is bounded. Since \(H \) is n.c. at \(g \), Proposition 2.6 says that \(H \) is n.c. at \(g^k \). And \(X \) is \(g^k \)-orbitally complete since \(X \) is \(g \)-orbitally complete. Therefore, (3.9) and Theorem 3.3 imply that

\[
\lim_{m \to \infty} (g^k)^m(a) = c \quad \text{for some } c \in X. \tag{3.10}
\]

To see that \(\lim_{n \to \infty} g^n(a) = c \), let \(\epsilon > 0 \). Then (3.10) and Lemma 3.2 (with \(B = H(a) \)) imply that there exists \(p \in \mathbb{N} \) such that \(d((g^k)^p(a), c) < \epsilon/2 \) and \(d(g^k p(x), g^k p(y)) < \epsilon/2 \) for \(x, y \in B \); that is,

\[
d(g^k p(a), c) < \frac{\epsilon}{2}, \quad d(g^k p(g^i(a)), g^k p(a)) < \frac{\epsilon}{2} \quad \forall i \in \mathbb{N}, \tag{3.11}
\]

since \(g \in H \Rightarrow g^i(a) \in H(a) \). So, if \(n > kp, n = kp + i \) for some \(i \in \mathbb{N} \), and

\[
d(g^n(a), c) \leq d(g^n(a), g^k p(a)) + d(g^k p(a), c), \tag{3.12}
\]

or

\[
d(g^n(a), c) \leq d(g^k p(g^i(a)), g^k p(a)) + d(g^k p(a), c) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon, \tag{3.13}
\]

by (3.11). Consequently, \(g^n(a) \to c \).

Now, let \(h \in H \) and suppose that \(h \) is continuous at \(c \). Then, \(\lim_{n \to \infty} h(g^n(a)) = h(c) \) and

\[
d(h(c), c) = \lim_{n \to \infty} d(hg^n(a), g^n(a)) = \lim_{n \to \infty} d(h(g^k)^n(a), (g^k)^n(a)). \tag{3.14}
\]

But \(H \) is n.c. at \(g^k \), so for \(n \in \mathbb{N} \) there exists \(h_n \in H \) such that \(hg^kn = g^k h_n \). Then, by (3.14),

\[
d(h(c), c) = \lim_{n \to \infty} d((g^k)^n(h_n(a)), (g^k)^n(a)) = 0, \tag{3.15}
\]

since \(a, h_n(a) \in H(a) \) and Lemma 3.2 holds for \(g^k \). Thus, (i) holds.

To prove (ii), suppose that \(H(x) \) is bounded for each \(x \in X \). If \(a, b \in X, g^n(a) \to c_a \) and \(g^n(b) \to c_b \) for some \(c_a, c_b \in X \) by (i). But \(c_a = c_b \), since \(H(a) \cup H(b) \) is bounded, and therefore, Lemma 3.2 applied to \(g^k \) implies that \(d(c_a, c_b) = \lim_{n \to \infty} d((g^k)^n(a), (g^k)^n(b)) = 0 \).

Thus, there exists a unique \(c \in X \) such that \(g^n(x) \to c \) for all \(x \in X \). We know that \(g(c) = c \) by part (i), if \(g \) is continuous at \(c \). Since \(g^n(d) = d \) for all \(n \) if \(d \) is a fixed point of \(g \), and therefore \(g^n(d) \to d, c \) must be the only fixed point of \(g \). Moreover, \(h(c) = c \) for all \(h \in H \) (even though \(h \) may not be continuous). This follows, since Proposition 2.6 applied to \(g^k \) implies that for each \(n \in \mathbb{N} \),

\[
d(c, h(c)) = d((g^k)^n(c), h(g^k)^n(c)) = d((g^k)^n(c), (g^k)^n(h_n(c))) \tag{3.16}
\]

for some \(h_n \in H \). But \(H(c) \) is bounded, so Lemma 3.2 applied to \(g^k \) implies that the right member of (3.16) converges to zero as \(n \to \infty \), and thus, \(c = h(c) \). \(\square \)
Remark 3.7. Theorem 3.3 appreciably generalizes Theorem 2.1 in [5] and Theorem 3.6 generalizes Corollary 2.3 in [5]—and hence Theorem 2 in [3] and the theorems of Rhoades and Watson [9]. Note that in Theorem 3.6(ii), the mappings \(h \in H \) \((h \neq g)\) need not be continuous. Remember also that \(C_g \) and \(O_g \) are special instances of \(H \).

The following example suggests that the requirement in Theorem 3.6(ii), that \(H(x) \) be bounded for each \(x \in X \), is not as restrictive as may first appear.

Example 3.8. Let \(S = \{ \text{continuous functions } f : [0, \infty) \rightarrow [0, \infty] \mid \text{there exists } a_f \in (0, \infty) \text{ such that } f(x) < x \text{ for } x > a_f \} \). (So, e.g., \(\{ f \mid f(x) = mx + b, \ m \in [0,1) \text{ and } b \geq 0 \} \subset S \), and \(\ln(x + b) \in S \) for \(b \geq 1 \)). Then (1) \(S \cup \{ l_d \} \) is a semi-group under composition of functions, and (2) \(O_f(x) \) is bounded for \(f \in S \) and \(x \in (0, \infty) \).

First note that, we can let \(M_f \) denote the maximum value of \(f \) on \([0,a_f] \) for each \(f \in S \) since each \(f \) is continuous. To see that (1) is true, let \(f,g \in S \). We need only to show that \(g \circ f = gf \in S \). Clearly, \(gf \) is a continuous self map of \([0,\infty) \). So let \(a_{gf} = \max\{a_f,M_g\} \) and suppose that \(x > a_{gf} \). We want \(gf(x) < x \). Now, \(x > a_{gf} \) implies that \(x > a_f \) so that (i) \(f(x) < x \). If \(f(x) > a_g \), then \(gf(x) < f(x) \) \(< x \) by (i) and the definition of \(a_g \). If \(f(x) \leq a_g \), \(gf(x) \leq M_g \leq a_{gf} < x \). So, in any event, \((g \circ f)(x) < x \) if \(x > a_{gf} \), and thus, \(g \circ f \in S \). (2) follows easily by using induction to show that \(f \in S \) implies that if \(x \in [0,\infty) \), \(f^n(x) \leq \max\{x,M_f\} \) for \(n \in \mathbb{N} \). We omit the details.

If we let \(P(t) = \alpha t \) for fixed \(\alpha \in (0,1) \) and \(t \in [0,\infty) \), we have the following corollary.

Corollary 3.9. Let \((X,d) \) be a bounded complete metric space and let \(g : X \rightarrow X \) be continuous. Suppose that \(H \) is a semi-group of self maps of \(X \) n.c. at \(g \) and \(g \in H \). If there exists \(\alpha \in (0,1) \) such that for any pair \(x,y \in X \) there exist \(r,s \in H \) and \(u,v \in [x,y] \) for which

\[
d(gx,gy) \leq \alpha d(ru,sv),
\]

then there exists a unique \(c \in X \) such that \(g^n(x) \rightarrow c \) for \(x \in X \), and \(c = gc = hc \) for all \(h \in H \).

4. Some consequences

Definition 4.1. A gauge function is an upper semicontinuous (u.s.c.) function \(\phi : [0, \infty) \rightarrow [0, \infty) \) such that \(\phi(0) = 0 \) and \(\phi(t) < t \) for all \(t > 0 \).

Lemma 4.2. Let \((X,d) \) be a metric space and let \(H \) be a semi-group of self maps of \(X \) which is n.c. at \(g \in H \). Suppose that \(H(x,y) = H(x) \cup H(y) \) is bounded for \(x,y \in X \) and there exists a gauge function \(\phi \) such that

\[
d(gx,gy) \leq \phi(\delta(H(x,y))) \quad \text{for } x,y \in X.
\]

Then, there exists a nondecreasing continuous function \(P : [0, \infty) \rightarrow [0, \infty) \) such that \(P^n(t) \rightarrow 0 \) for all \(t > 0 \) and which satisfies the following condition: for any pair \(x,y \in X \) there exist \(r = r(x,y) \), \(s = s(x,y) \in H \), and \(u,v \in [x,y] \) such that

\[
d(gx,gy) \leq P(d(ru,sv)).
\]
Proof. Let \(x, y \in X \) and suppose that (4.1) holds. Since, \(\phi \) is a gauge function, as is well known [2], there exists a nondecreasing continuous function \(P : [0, \infty) \to [0, \infty) \) such that \(P^n(t) \to 0 \) for \(t \geq 0 \), and
\[
\phi(t) < P(t), \quad P(t) < t \quad \forall t \in (0, \infty).
\] (4.3)
Since \(P \) is continuous, (4.3) implies that for any \(t > 0 \), there exists \(\varepsilon_t \in (0, t) \) such that
\[
t' \in (t - \varepsilon_t, t + \varepsilon_t) \quad \Rightarrow \quad \phi(t) < P(t').
\] (4.4)
And since \(H(x, y) \) is bounded, the definition of \(\delta \) implies that there exist \(r, s \in H \) and \(u, v \in \{x, y\} \) such that, with \(t = \delta(H(x, y)) \),
\[
t = \delta(H(x, y)) \geq d(ru, sv) > \delta(H(x, y)) - \varepsilon_t.
\] (4.5)
So, with \(t' = d(ru, sv) \), (4.4) and (4.5) imply that
\[
\phi(\delta(H(x, y))) < P(d(ru, sv)).
\] (4.6)
Therefore, (4.1) implies that \(d(gx, gy) \leq P(d(ru, sv)). \)

The following theorem provides a generalization of Theorem 2.1 in [2].

Theorem 4.3. Let \((X, d) \) be a complete metric space and let \(H \) be a semi-group of self maps of \(X \) which is n.c. at some \(g \in H \). Suppose that the following conditions are satisfied:

(i) \(H(x) \) is bounded for all \(x \in X \), \(g \) is continuous,

(ii) there exists a gauge function \(\phi \) and \(k \in \mathbb{N} \) such that \(d(g^k x, g^k y) \leq \phi(\delta(H(x, y))) \) for \(x, y \in X \).

Then

(a) \(H \) has a unique common fixed point \(c \) and \(g^n(x) \to c \) for \(x \in X \).

(b) If for each \(h \in H - \{i_d\} \) there exists \(k = k_h \in \mathbb{N} \) such that (4.7) holds with \(g = h \), then
\[
h^n(x) \to c \quad \forall x \in X, \quad h \in H - \{i_d\}.
\] (4.8)

Proof. Now, (i) implies that \(H(x, y) = H(x) \cup H(y) \) is bounded for \(x, y \in X \). To see that (a) is true, note that \(H \) is n.c. at \(g^k \) by Proposition 2.6 and substitute \(g^k \) for \(g \) in Lemma 4.2 to conclude that (3.9) holds. Consequently, we can appeal to Theorem 3.6(ii) to obtain a \(c \in X \) such that \(g^n(x) \to c \) for \(x \in X \). And since \(g \) is continuous, \(c \) is the unique fixed point of \(g \) and a fixed point for each \(h \in H \). Thus, \(c \) is the unique common fixed point of \(H \) (remember, \(g \in H \)) and therefore (a) holds.

To prove (b) note that, by part (a), if \(h \in H - \{i_d\}, \ h \neq g, \ h^n(c) = g(c) = c \) for \(n \in \mathbb{N} \). But Theorem 3.6 applied to \(h \) yields a unique \(c_1 \in X \) such that \(h^n(x) \to c_1 \) for all \(x \in X \). Since \(h^n(c) = c \) for all \(n, c_1 = c \).

Remark 4.4. Theorem 4.3 generalizes Theorem 2.1 in [2] in the following ways:

(i) The semi-group \(H \) is not required to be near-commutative (i.e., n.c. at each \(h \in H \)), but n.c. only at \(g \).
(ii) \(g \) is the only member of \(H \) required to be continuous,

(iii) in (b), (4.7) is required to hold only for \(k = k_h \), not for all \(k \geq k_h \).

Theorem 4.3 yields the following corollary, which generalizes the theorem of Ohta and Nikaido [8] by requiring only that the orbits of \(f \)—but not all of \(X \)—be bounded.

Corollary 4.5. Let \(f \) be a continuous self mapping of a metric space \((X,d)\) having bounded orbits \(O_f(x) \) for all \(x \in X \). If there exist \(c \in (0,1) \) and \(k \in \mathbb{N} \) such that

\[
d(f^k x, f^k y) \leq c \delta(\{f^t | t \in \{x,y\}, i \in \mathbb{N} \})
\]

(4.9)

for all \(x, y \in X \), then \(f \) has a unique fixed point.

Observe that **Lemma 3.2** does not require that \(g \in H \), whereas the theorems in Section 3 do. The requirement that \(g \in H \) was convenient in the proof, but the following proposition says that it is not necessary when \(O_g(a) \) is bounded. Moreover, this result is needed for the proof of **Theorem 4.7**.

Proposition 4.6. If \(H \) is a semi-group of self maps n.c. at \(g \) and \(g \in H \), then \(H_\beta = \{g^n h | n \in \mathbb{N} \cup \{0\} \text{ and } h \in H \} \) is a semi-group which is n.c. at \(g \). Moreover, \(g \in H_\beta \) and \(H \subset H_\beta \).

Proof. \(H_\beta \) is a semi-group. For if \(g^n h_1, g^m h_2 \in H_\beta \), since \(H \) is n.c. at \(g \), we have

\[
g^n h_1 g^m h_2 = g^n (h_1 g^m) h_2 = g^n (g^m h_2) = g^n (h_1 h_2) = g^n h_3 h_2 \in H.
\]

\(H_\beta \) is n.c. at \(g \), since \((H \text{ n.c. at } g) \) implies that there exists \(h_2 \in H \) such that \((g^n h) g = g^n (h g) = g^n (g h) = g (g^n h) \).

It is clear that if \(g : X \to X \) is a \(P \)-contraction relative to \(H \), then it is certainly a \(P \)-contraction relative to \(H_\beta \) since \(H \subset H_\beta \). We use this fact in the proof of **Theorem 4.7**.

Theorem 4.7. Let \(C \) be a compact subset of a normed linear space \(X \) which is star-shaped with respect to \(a \in C \). Let \(T : C \to C \) be continuous and let \(H \) be a semi-group of affine maps \(I : C \to C \) n.c. at \(T \) such that \(I(q) = q \). If for each pair \(x, y \in C \) there exist \(I, J \in H \) and \(u, v \in \{x, y\} \) for which

\[
\|Tx - Ty\| \leq \|Iu - Jv\|,
\]

(4.10)

then there exists \(a \in C \) such that \(a = Ta \) and \(a = Ia \) for all continuous \(I \in H \).

Proof. Choose a sequence \(\{k_n\} \) in \((0,1)\) such that \(k_n \to 1 \), and for each \(n \in \mathbb{N} \), let

\[
T_n(x) = k_n Tx + (1 - k_n) q.
\]

(4.11)

Since \(C \) is star-shaped with respect to \(q \), \(T_n : C \to C \) for \(n \in \mathbb{N} \). Moreover, if \(I \in H \), there exists \(J \in H \) such that

\[
IT_n x = I(k_n Tx + (1 - k_n) q) = k_n I(Tx) + (1 - k_n) Iq
\]

\[
= k_n J(Ix) + (1 - k_n) q = T_n Jx,
\]

(4.12)

since \(I \) is affine, \(H \) is n.c. at \(T \), and \(Iq = q \). Thus, for each \(n \in \mathbb{N} \), \(H \) is a semi-group of affine maps which is n.c. at \(T_n \). Then, by **Proposition 4.6**, \(H_{T_n} \) is a semi-group of self maps of \(C \) which is n.c. at \(T_n \), \(T_n \in H_{T_n} \), and \(H \subset H_{T_n} \) for \(n \in \mathbb{N} \).
Now fix n. By hypothesis, for each pair $x, y \in C$ there exist $I, J \in H(\subset H_{Tn})$ and $u, v \in \{x, y\}$ such that

$$\|Tx - Ty\| \leq ||Iu - Jv||,$$

so

$$\|T_n x - T_n y\| \leq k_n ||Iu - Jv||,$$

by (4.11). Therefore, since T_n is continuous and $k_n \in (0, 1)$, Corollary 3.9 applied to T_n and H_{Tn} (C compact implies that C is bounded and complete) implies that there exists a unique $x_n \in C$ such that

$$x_n = T_n (x_n) = I(x_n) \quad \forall I \in H_{Tn}.$$ \hspace{1cm} (4.15)

Thus we have a sequence $\{x_n\}$ in C which satisfies (4.15). Since C is compact, $\{x_n\}$ has a subsequence $\{x_{i_n}\}$ which converges to some $a \in C$. Equations (4.11) and (4.15) thus imply that

$$a = \lim_{n \to \infty} x_{i_n} = \lim_{n \to \infty} k_{i_n} Tx_{i_n} + \lim_{n \to \infty} (1 - k_{i_n}) q = \lim_{n \to \infty} Ix_{i_n}. \hspace{1cm} (4.16)$$

But T is continuous, so (4.16) implies that $a = Ta$, and $a = Ia$ for all continuous I. \hfill \Box

Remark 4.8. We see that Theorem 4.7 does indeed extend Theorem 3 in [7] if we observe that the family \mathcal{F} in Theorem 3 [7]. is a family of sets which is a subset of C_ϕ. We can let

$$H = \{\text{maps } h : C \to C \mid h \text{ is affine, } h \in C_\phi\}. \hspace{1cm} (4.17)$$

Then H is a semi-group and $\mathcal{F} \subset H$.

5. Conclusion. We conclude with further evidence of the generality and applicability of the concept of being nearly commutative at a function φ. The theorem below generalizes Theorem 4.2 in [5] by replacing the semi-group C_φ with a more general semi-group H.

Theorem 5.1. Let f and g be commuting self maps of a compact metric space (X, d) such that gf is continuous. If H is a semi-group of self maps of X which is n.c. at gf, and

$$fx \neq gy \Rightarrow d(fx, gy) < \delta(H(x, y)), \hspace{1cm} (5.1)$$

then there exists a unique point $a \in X$ such that $a = fa = ga = ha$ for all $h \in H$.

We leave the proof of Theorem 5.1 to the interested reader.

References

GERALD F. JUNGCK: DEPARTMENT OF MATHEMATICS, BRADLEY UNIVERSITY, PEORIA, IL 61625, USA

E-mail address: gfj@hilltop.bradley.edu
Submit your manuscripts at
http://www.hindawi.com