ON MATRIX TRANSFORMATIONS CONCERNING
THE NAKANO VECTOR-VALUED
SEQUENCE SPACE

SUTHEP SUANTAI

(Received 15 August 2000 and in revised form 20 October 2000)

ABSTRACT. We give the matrix characterizations from Nakano vector-valued sequence space \(\ell(X,p) \) and \(F_r(X,p) \) into the sequence spaces \(E_r, \ell_\infty, \ell_\infty(q), bs, \) and \(cs \), where \(p = (p_k) \) and \(q = (q_k) \) are bounded sequences of positive real numbers such that \(p_k > 1 \) for all \(k \in \mathbb{N} \) and \(r \geq 0 \).

2000 Mathematics Subject Classification. 46A45.

1. Introduction. Let \((X, \| \cdot \|) \) be a Banach space, \(r \geq 0 \) and \(p = (p_k) \) a bounded sequence of positive real numbers. We write \(x = (x_k) \) with \(x_k \in X \) for all \(k \in \mathbb{N} \). The \(X \)-valued sequence spaces \(c_0(X,p), c(X,p), \ell_\infty(X,p), \ell(X,p), E_r(X,p), F_r(X,p), \) and \(\ell_\infty(X,p) \) are defined as

\[

c_0(X,p) = \{ x = (x_k) : \lim_{k \to \infty} \|x_k\|^{p_k} = 0 \}, \\
c(X,p) = \{ x = (x_k) : \lim_{k \to \infty} \|x_k - a\|^{p_k} = 0 \text{ for some } a \in X \}, \\
\ell_\infty(X,p) = \{ x = (x_k) : \sup_{k} \|x_k\|^{p_k} < \infty \}, \\
\ell(X,p) = \{ x = (x_k) : \sum_{k=1}^{\infty} \|x_k\|^{p_k} < \infty \}, \quad \tag{1.1}
\]

\[
E_r(X,p) = \{ x = (x_k) : \sup_{k} \frac{\|x_k\|^{p_k}}{k^r} < \infty \}, \\
F_r(X,p) = \{ x = (x_k) : \sum_{k=1}^{\infty} k^r \|x_k\|^{p_k} < \infty \},
\]

\[
\ell_\infty(X,p) = \bigcap_{n=1}^{\infty} \{ x = (x_k) : \sup_{k} \|x_k\|^{n^{1/p_k}} \}.
\]

When \(X = K \), the scalar field of \(X \), the corresponding spaces are written as \(c_0(p), c(p), \ell_\infty(p), \ell(p), E_r(p), F_r(p), \) and \(\ell_\infty(p) \), respectively. The spaces \(c_0(p), c(p), \) and \(\ell_\infty(p) \) are known as the sequence spaces of Maddox. These spaces were first introduced and studied by Simons [7] and Maddox [4, 5]. The space \(\ell(p) \) was first defined by Nakano [6] and it is known as the Nakano sequence space and the space \(\ell(X,p) \) is known as the Nakano vector-valued sequence space. When \(p_k = 1 \) for all \(k \in \mathbb{N} \), the spaces \(E_r(p) \) and \(F_r(p) \) are written as \(E_r \) and \(F_r \), respectively. These two
sequence spaces were first introduced by Cooke [1]. The space $\ell_\infty(p)$ was first defined by Grosse-Erdmann [2] and he has given in [3] characterizations of infinite matrices mapping between scalar-valued sequence spaces of Maddox. Wu and Liu [10] gave necessary and sufficient conditions for infinite matrices mapping from $c_0(X,p)$ and $\ell_\infty(X,p)$ into $c_0(q)$ and $\ell_\infty(q)$. Suantai [8] has given characterizations of infinite matrices mapping $\ell(X,p)$ into ℓ_∞ and $\ell_\infty(q)$ when $p_k \leq 1$ for all $k \in \mathbb{N}$ and he has also given in [9] characterizations of those infinite matrices mapping from $\ell(X,p)$ into the sequence space E_r when $p_k \leq 1$ for all $k \in \mathbb{N}$.

In this paper, we extend the results of [8, 9] in case $p_k > 1$ for all $k \in \mathbb{N}$. Moreover, we also give the matrix characterizations from $\ell(X,p)$ and $F_r(X,p)$ into the sequence spaces bs and cs.

2. Notations and definitions. Let $(X,\| \cdot \|)$ be a Banach space, the space of all sequences in X is denoted by $W(X)$, and $\Phi(X)$ denotes the space of all finite sequences in X. When $X = K$, the scalar field of X, the corresponding spaces are written as w and Φ.

A sequence space in X is a linear subspace of $W(X)$. Let E be an X-valued sequence space. For $x \in E$ and $k \in \mathbb{N}$, x_k stands for the kth term of x. For $k \in \mathbb{N}$, we denote by e_k the sequence $(0,0,\ldots,0,1,0,\ldots)$ with 1 in the kth position and by e the sequence $(1,1,1,\ldots)$. For $x \in X$ and $k \in \mathbb{N}$, let $e_k(x)$ be the sequence $(0,0,\ldots,0,x,0,\ldots)$ with x in the kth position and let $e(x)$ be the sequence (x,x,x,\ldots). We call a sequence space E normal if $(t_kx_k) \in E$ for all $x = (x_k) \in E$ and $t_k \in K$ with $|t_k| = 1$ for all $t_k \in \mathbb{N}$. A normed sequence space $(E,\| \cdot \|)$ is said to be norm monotone if $x = (x_k)$, $y = (y_k) \in E$ with $\|x_k\| \leq \|y_k\|$ for all $k \in \mathbb{N}$ we have $\|x\| \leq \|y\|$. For a fixed scalar sequence $\mu = (\mu_k)$, the sequence space E_μ is defined as

$$E_\mu = \{x \in W(X) : (\mu_kx_k) \in E\}. \quad (2.1)$$

Let $A = (f^n_k)$ with f^n_k in X', the topological dual of X. Suppose that E is a space of X-valued sequences and F a space of scalar-valued sequences. Then A is said to map E into F, written by $A : E \rightarrow F$, if for each $x = (x_k) \in E$, $A_n(x) = \sum_{k=1}^{\infty} f^n_k(x_k)$ converges for each $n \in \mathbb{N}$, and the sequence $Ax = (A_n(x)) \in F$. Let (E,F) denote the set of all infinite matrices mapping from E into F.

Suppose that the X-valued sequence space E is endowed with some linear topology τ. Then E is called a K-space if for each $k \in \mathbb{N}$, the kth coordinate mapping $p_k : E \rightarrow X$, defined by $p_k(x) = x_k$, is continuous on E. If, in addition, (E,τ) is a Fréchet (Banach) space, then E is called an FK- (BK-) space. Now, suppose that E contains $\Phi(X)$. Then E is said to have property AB if the set $\{\sum_{k=1}^{\infty} e^k(x_k) : n \in \mathbb{N}\}$ is bounded in E for every $x = (x_k) \in E$. It is said to have property AK if $\sum_{k=1}^{\infty} e^k(x_k) \rightarrow x$ in E as $n \rightarrow \infty$ for every $x = (x_k) \in E$. It has property AD if $\Phi(X)$ is dense in E.

It is known that the Nakano sequence space $\ell(X,p)$ is an FK-space with property AK under the paranorm $g(x) = (\sum_{k=1}^{\infty} \|x_k\|^p_k)^{1/M}$, where $M = \max\{1,\sup_k p_k\}$. If $p_k > 1$ for all $k \in \mathbb{N}$, then $\ell(X,p)$ is a BK-space with the Luxemburg norm defined by

$$\|(x_k)\| = \inf \left\{ \varepsilon > 0 : \sum_{k=1}^{\infty} \left\| \frac{x_k}{\varepsilon} \right\|^{p_k} \leq 1 \right\}. \quad (2.2)$$
3. Main results. We first give a characterization of an infinite matrix mapping from \(\ell(X,p) \) into \(E_r \) when \(p_k > 1 \) for all \(k \in \mathbb{N} \). To do this, we need the following lemma.

Lemma 3.1. Let \(E \) be an \(X \)-valued BK-space which is normal and norm monotone and let \(A = (f_k^n) \) be an infinite matrix. Then \(A : E \rightarrow E_r \) if and only if \(\sup_n \sum_{k=1}^{\infty} |f_k^n(x_k)|/n^r < \infty \) for every \(x = (x_k) \in E \).

Proof. If the condition holds true, it follows that

\[
\sup_n \frac{\sum_{k=1}^{\infty} f_k^n(x_k)}{n^r} \leq \sup_n \sum_{k=1}^{\infty} \frac{|f_k^n(x_k)|}{n^r} < \infty
\]

for every \(x = (x_k) \in E \), hence \(A : E \rightarrow E_r \).

Conversely, assume that \(A : E \rightarrow E_r \). Since \(E \) and \(E_r \) are BK-spaces, by Zeller’s theorem, \(A : E \rightarrow E_r \) is bounded, so there exists \(M > 0 \) such that

\[
\sup_{n \in \mathbb{N}} \frac{\sum_{k=1}^{\infty} f_k^n(x_k)}{n^r} \leq M.
\]

Let \(x = (x_k) \in E \) be such that \(\|x\| = 1 \). For each \(n \in \mathbb{N} \), we can choose a scalar sequence \((t_k) \) with \(|t_k| = 1 \) and \(f_k^n(t_kx_k) = |f_k^n(x_k)| \) for all \(k \in \mathbb{N} \). Since \(E \) is normal and norm monotone, we have \((t_kx_k) \in E \) and \(\|(t_kx_k)\| \leq 1 \). It follows from (3.2) that

\[
\sum_{k=1}^{\infty} \frac{|f_k^n(x_k)|}{n^r} = \frac{\sum_{k=1}^{\infty} f_k^n(t_kx_k)}{n^r} \leq M,
\]

which implies

\[
\sup_{n \in \mathbb{N}} \sum_{k=1}^{\infty} \frac{|f_k^n(x_k)|}{n^r} \leq M.
\]

It follows from (3.4) that for every \(x = (x_k) \in E \),

\[
\sup_{n \in \mathbb{N}} \sum_{k=1}^{\infty} \frac{|f_k^n(x_k)|}{n^r} \leq M\|x\|.
\]

This completes the proof.

Theorem 3.2. Let \(p = (p_k) \) be a bounded sequence of positive real numbers with \(p_k > 1 \) for all \(k \in \mathbb{N} \) and \(1/p_k + 1/q_k = 1 \) for all \(k \in \mathbb{N} \), and let \(r \geq 0 \). For an infinite matrix \(A = (f_k^n) \), \(A \in (\ell(X,p),E_r) \) if and only if there is \(m_0 \in \mathbb{N} \) such that

\[
\sup_n \sum_{k=1}^{\infty} ||f_k^n||^{q_k} n^{-rq_k} m_0^{-q_k} < \infty.
\]

Proof. Let \(x = (x_k) \in \ell(X,p) \). By (3.6), there are \(m_0 \in \mathbb{N} \) and \(K > 1 \) such that

\[
\sum_{k=1}^{\infty} ||f_k^n||^{q_k} n^{-rq_k} m_0^{-q_k} < K, \quad \forall n \in \mathbb{N}.
\]

Note that for \(a, b \geq 0 \), we have

\[
ab \leq a^{p_k} + b^{q_k}.
\]
It follows by (3.7) and (3.8) that for \(n \in \mathbb{N} \),
\[
|n^{-r} \sum_{k=1}^{\infty} f^n_k(x_k)| = |n^{-r} \sum_{k=1}^{\infty} f^n_k(m_0^{-1} \cdot m_0 x_k)|
\]
\[
\leq \sum_{k=1}^{\infty} (n^{-r} m_0^{-1} ||f^n_k||) (||m_0 x_k||)
\]
\[
\leq \sum_{k=1}^{\infty} n^{-r q_k} m_0^{-d_k} ||f^n_k||^{q_k} + m_0^{\alpha} \sum_{k=1}^{\infty} ||x_k||^{p_k}
\]
\[
\leq K + m_0^{\alpha} \sum_{k=1}^{\infty} ||x_k||^{p_k}, \quad \text{where} \quad \alpha = \sup_k p_k.
\]

Hence \(\sup n^{-r} |\sum_{k=1}^{\infty} f^n_k(x_k)| < \infty \), so that \(Ax \in E_r \).

For necessity, assume that \(A \in (\ell(X, p), E_r) \). For each \(k \in \mathbb{N} \), we have \(\sup_n n^{-r} |f^n_k(x)| < \infty \) for all \(x \in X \) since \(e^{(k)}(x) \in \ell(X, p) \). It follows by the uniform bounded principle that for each \(k \in \mathbb{N} \) there is \(C_k > 1 \) such that
\[
\sup_n n^{-r} ||f^n_k|| \leq C_k.
\]

(3.10)

Suppose that (3.6) is not true. Then
\[
\sup n^{-r} ||f^n_k|| = \infty, \quad \forall m \in \mathbb{N}.
\]

(3.11)

For \(n \in \mathbb{N} \), we have by (3.10) that for \(k, m \in \mathbb{N} \),
\[
\sum_{j=1}^{\infty} ||f^n_j||^{q_j} n^{-r q_j} m^{-d_j} = \sum_{j=1}^{k} ||f^n_j||^{q_j} n^{-r q_j} m^{-d_j} + \sum_{j=k}^{\infty} ||f^n_j||^{q_j} n^{-r q_j} m^{-d_j}
\]
\[
\leq \sum_{j=1}^{k} C_j^{q_j} m^{-d_j} + \sum_{j=k}^{\infty} ||f^n_j||^{q_j} n^{-r q_j} m^{-d_j}.
\]

(3.12)

This together with (3.11) give
\[
\sup n \sum_{j>k} ||f^n_j||^{q_j} n^{-r q_j} m^{-d_j} = \infty, \quad \forall k, m \in \mathbb{N}.
\]

(3.13)

By (3.13) we can choose \(0 = k_0 < k_1 < k_2 < \cdots, m_1 < m_2 < \cdots, m_i > 4^i \) and a subsequence \((n_i)\) of positive integers such that for all \(i \geq 1 \),
\[
\sum_{k_{i-1} < j \leq k_i} ||f_j^{n_i}||^{q_j} n_i^{-r q_j} m_i^{-d_j} > 2^i.
\]

(3.14)

For each \(i \in \mathbb{N} \), we can choose \(x_j \in X \) with \(||x_j|| = 1 \), for \(k_{i-1} < j \leq k_i \) such that
\[
\sum_{k_{i-1} < j \leq k_i} ||f_j^{n_i}(x_j)||^{q_j} n_i^{-r q_j} m_i^{-d_j} > 2^i.
\]

(3.15)
For each $i \in \mathbb{N}$, let $F_i : (0, \infty) \to (0, \infty)$ be defined by

$$F_i(M) = \sum_{k_{i-1} < j \leq k_i} |f_{j}^{n_i}(x_j)|^{q_j} n_i^{-r q_j} M^{-q_j}.$$ \hspace{1cm} \text{(3.16)}

Then F_i is continuous and non-increasing such that $F(M) \to 0$ as $M \to \infty$. Thus there exists $M_i > 0$ such that $M_i > m_i$ and

$$F(M_i) = \sum_{k_{i-1} < j \leq k_i} |f_{j}^{n_i}(x_j)|^{q_j} n_i^{-r q_j} M_i^{-q_j} = 2^i.$$ \hspace{1cm} \text{(3.17)}

Put

$$y = (y_j), \quad y_j = 4^{-i} M_i^{-(q_j-1)} n_i^{-r q_j/p_j} |f_{j}^{n_i}(x_j)|^{q_j-1} x_j \text{ for } k_{i-1} < j \leq k_i.$$ \hspace{1cm} \text{(3.18)}

Thus

$$\sum_{j=1}^{\infty} ||y_j||^{p_j} = \sum_{i=1}^{\infty} \sum_{k_{i-1} < j \leq k_i} 4^{-i p_j} M_i^{-p_j(q_j-1)} n_i^{-r q_j} |f_{j}^{n_i}(x_j)|^{p_j(q_j-1)}$$

$$\leq \sum_{i=1}^{\infty} 4^{-i} \sum_{k_{i-1} < j \leq k_i} M_i^{-q_j} n_i^{-r q_j} |f_{j}^{n_i}(x_j)|^{q_j}$$

$$= \sum_{i=1}^{\infty} 4^{-i} \cdot 2^i$$

$$= \sum_{i=1}^{\infty} \frac{1}{2^i} = 1.$$ \hspace{1cm} \text{(3.19)}

Thus $y = (y_j) \in \ell(X, p)$. Since $\ell(X, p)$ is a BK-space which is normal and norm monotone under the Luxemburg norm, by Lemma 3.1, we obtain that

$$\sup_n \sum_{k=1}^{\infty} |f_k^n(y_k)|^{n^r} < \infty.$$ \hspace{1cm} \text{(3.20)}

But we have

$$\sup_n \sum_{j=1}^{\infty} \frac{|f_j^n(y_j)|}{n^r} \geq \sup_i \sum_{j=1}^{\infty} \frac{|f_j^{n_i}(y_j)|}{n_i^r} \geq \sup_i \sum_{k_{i-1} < j \leq k_i} |f_{j}^{n_i}(x_j)|^{q_j}$$

$$= \sup_i \sum_{k_{i-1} < j \leq k_i} 4^{-i} M_i^{-(q_j-1)} n_i^{-r(q_j/p_j+1)} |f_{j}^{n_i}(x_j)|^{q_j}$$

$$= \sup_i \sum_{k_{i-1} < j \leq k_i} 4^{-i} M_i^{-(q_j-1)} n_i^{-r q_j} |f_{j}^{n_i}(x_j)|^{q_j}$$

$$= \sup_i \sum_{k_{i-1} < j \leq k_i} |f_{j}^{n_i}(x_j)|^{q_j} n_i^{-r q_j} M_i^{-q_j} 4^{-i} M_i$$

$$\geq \sup_i 2^i = \infty, \quad \text{because } M_i > 4^i.$$ \hspace{1cm} \text{(3.21)}

This is contradictory with (3.20). Therefore (3.6) is satisfied. \hfill \Box
Theorem 3.3. Let \(p = (p_k) \) be a bounded sequence of positive real numbers such that \(p_k > 1 \) for all \(k \in \mathbb{N} \), \(1/p_k + 1/q_k = 1 \) for all \(k \in \mathbb{N} \), \(r \geq 0 \) and \(s \geq 0 \). Then for an infinite matrix \(A = (f^n_k), A \in (F_r(X,p),E_s) \) if and only if there is \(m_0 \in \mathbb{N} \) such that
\[
\sup_{n \to \infty} \sum_{k=1}^{\infty} \left(k^{-r/q_k/p_k} \| f^n_k \|^{q_k} n^{-s/q_k} m_0^{-q_k} \right) < \infty.
\] (3.22)

Proof. Since \(F_r(X,p) = \ell(X,p)(kr/p_k) \), it is easy to see that \(A \in (F_r(X,p),E_s) \iff (k^{-r/p_k} f^n_k)_{n,k} \in (\ell(X,p)E_s). \) (3.23)

By Theorem 3.2, we have \((k^{-r/p_k} f^n_k)_{n,k} \in (\ell(X,p)E_s) \) if and only if there is \(m_0 \in \mathbb{N} \) such that
\[
\sup_{n \to \infty} \sum_{k=1}^{\infty} \left(k^{-r/q_k/p_k} \| f^n_k \|^{q_k} n^{-s/q_k} m_0^{-q_k} \right) < \infty.
\] (3.24)

Thus the theorem is proved. \(\square \)

Since \(E_0 = \ell_\infty \), the following two results are obtained directly from Theorems 3.2 and 3.3, respectively.

Corollary 3.4. Let \(p = (p_k) \) be a bounded sequence of positive real numbers with \(p_k > 1 \) for all \(k \in \mathbb{N} \) and let \(1/p_k + 1/q_k = 1 \) for all \(k \in \mathbb{N} \). Then for an infinite matrix \(A = (f^n_k), A \in (\ell(X,p),\ell_\infty) \) if and only if there is \(m_0 \in \mathbb{N} \) such that
\[
\sup_{n \to \infty} \sum_{k=1}^{\infty} \| f^n_k \|^{q_k} m_0^{-q_k} < \infty.
\] (3.25)

Corollary 3.5. Let \(p = (p_k) \) be a bounded sequence of positive real numbers with \(p_k > 1 \) for all \(k \in \mathbb{N} \) and let \(1/p_k + 1/q_k = 1 \) for all \(k \in \mathbb{N} \). Then for an infinite matrix \(A = (f^n_k), A \in (F_r(X,p),\ell_\infty) \) if and only if there is \(m_0 \in \mathbb{N} \) such that
\[
\sup_{n \to \infty} \sum_{k=1}^{\infty} \left(k^{-r/q_k/p_k} \| f^n_k \|^{q_k} n^{-s/q_k} m_0^{-q_k} \right) < \infty.
\] (3.26)

Theorem 3.6. Let \(p = (p_k) \) and \(q = (q_k) \) be bounded sequences of positive real numbers with \(p_k > 1 \) for all \(k \in \mathbb{N} \) and let \(1/p_k + 1/t_k = 1 \) for all \(k \in \mathbb{N} \). Then for an infinite matrix \(A = (f^n_k), A \in (\ell(X,p),\ell_\infty(q)) \) if and only if for each \(r \in \mathbb{N} \), there is \(m_r \in \mathbb{N} \) such that
\[
\sup_{n,k} \sum_{k=1}^{\infty} r^{-t_k/q_n} \| f^n_k \|^{t_k} m_r^{-t_k} < \infty.
\] (3.27)

Proof. Since \(\ell_\infty(q) = \cap_{r=1}^{\infty} \ell_\infty(r^{1/q_k}) \), it follows that
\[
A \in (\ell(X,p),\ell_\infty(q)) \iff A \in \left(\ell(X,p),\ell_\infty(r^{1/q_k}) \right), \quad \forall r \in \mathbb{N}.
\] (3.28)

It is easy to show that for \(r \in \mathbb{N} \),
\[
A \in \left(\ell(X,p),\ell_\infty(r^{1/q_k}) \right) \iff (r^{1/q_n} f^n_k)_{n,k} \in (\ell(X,p),\ell_\infty).
\] (3.29)
We obtain by Corollary 3.4 that for \(r \in \mathbb{N}, (r^{1/q_n} f^n_{k,n,k})_{n,k} \in (\ell(X,p), \ell_\infty) \) if and only if there is \(m_r \in \mathbb{N} \) such that

\[
\sup_n \sum_{k=1}^{\infty} r^{t_k/q_n} \|f^n_k\|^{t_k} m_r^{-t_k} < \infty.
\] (3.30)

Thus the theorem is proved.

Theorem 3.7. Let \(p = (p_k) \) and \(q = (q_k) \) be bounded sequences of positive real numbers with \(p_k > 1 \) for all \(k \in \mathbb{N} \) and let \(1/p_k + 1/t_k = 1 \) for all \(k \in \mathbb{N} \). For an infinite matrix \(A = (f^n_k), A \in (F_r(X,p), \ell_\infty(q)) \) if and only if for each \(i \in \mathbb{N} \), there is \(m_i \in \mathbb{N} \) such that

\[
\sup_n \sum_{k=1}^{\infty} i^{t_k/q_n} k^{1-rt_k/p_k} \|f^n_k\|^{t_k} m_i^{-t_k} < \infty.
\] (3.31)

Proof. Since \(F_r(X,p) = \ell(X,p)(k^{r/p_k}), \) it implies that

\[
A \in (F_r(X,p), \ell_\infty(q)) \iff (k^{-r/p_k} f^n_{k,n,k})_{n,k} \in (\ell(X,p), \ell_\infty(q)).
\] (3.32)

It follows from Theorem 3.6 that \(A \in (F_r(X,p), \ell_\infty(q)) \) if and only if for each \(i \in \mathbb{N}, \) there is \(m_i \in \mathbb{N} \) such that

\[
\sup_n \sum_{k=1}^{\infty} i^{t_k/q_n} k^{1-rt_k/p_k} \|f^n_k\|^{t_k} m_i^{-t_k} < \infty.
\] (3.33)

Theorem 3.8. Let \(p = (p_k) \) be bounded sequence of positive real numbers with \(p_k > 1 \) for all \(n \in \mathbb{N} \) and let \(1/p_k + 1/q_k = 1 \) for all \(k \in \mathbb{N} \). Then for an infinite matrix \(A = (f^n_k), A \in (\ell(X,p), bs) \) if and only if there is \(m_0 \in \mathbb{N} \) such that

\[
\sup_n \sum_{k=1}^{\infty} \left(\sum_{i=1}^{n} f^i_k \right)^{q_k} m_0^{-q_k} < \infty.
\] (3.34)

Proof. For an infinite matrix \(A = (f^n_k), \) we can easily show that

\[
A \in (\ell(X,p), bs) \iff \left(\sum_{i=1}^{n} f^i_k \right)_{n,k} \in (\ell(X,p), \ell_\infty).
\] (3.35)

This implies by Corollary 3.4 that \(A \in (\ell(X,p), bs) \) if and only if there is \(m_0 \in \mathbb{N} \) such that

\[
\sup_n \sum_{k=1}^{\infty} \left(\sum_{i=1}^{n} f^i_k \right)^{q_k} m_0^{-q_k} < \infty.
\] (3.36)

Theorem 3.9. Let \(p = (p_k) \) be a bounded sequence of positive real numbers with \(p_k > 1 \) for all \(k \in \mathbb{N} \) and let \(1/p_k + 1/q_k = 1 \) for all \(k \in \mathbb{N} \). Then for an infinite matrix \(A = (f^n_k), A \in (\ell(X,p), cs) \) if and only if

1. there is \(m_0 \in \mathbb{N} \) such that \(\sup_n \sum_{k=1}^{\infty} \|f^n_k\|^{q_k} m_0^{-q_k} < \infty \) and
2. for each \(k \in \mathbb{N} \) and \(x \in X, \sum_{n=1}^{\infty} f^n_k(x) \) converges.
Proof. The necessity is obtained by Theorem 3.8 and by the fact that $e^{(k)}(x) \in \ell(X,p)$ for every $k \in \mathbb{N}$ and $x \in X$.

Now, suppose that (1) and (2) hold. By Theorem 3.8, we have $A : \ell(X,p) \rightarrow bs$. Let $x = (x_k) \in \ell(X,p)$. Since $\ell(X,p)$ has the AK property, we have $x = \lim_{n \rightarrow \infty} \sum_{k=1}^{n} e^{(k)}(x_k)$.

By Zeller’s theorem, $A : \ell(X,p) \rightarrow bs$ is continuous. It implies that

$$Ax = \lim_{n \rightarrow \infty} \sum_{k=1}^{n} Ae^{(k)}(x_k).$$

(3.37)

By (2), $Ae^{(k)}(x_k) \in cs$ for all $k \in \mathbb{N}$. Since cs is a closed subspace of bs, it implies that $Ax \in cs$, that is, $A : \ell(X,p) \rightarrow cs$.

Acknowledgement. The author would like to thank the Thailand Research Fund for the financial support during the preparation of this paper.

References

Submit your manuscripts at http://www.hindawi.com