COMMON FIXED POINTS OF SET-VALUED MAPPINGS

M. R. SINGH, L. S. SINGH, and P. P. MURTHY

(Received 27 August 1996 and in revised form 8 July 1998)

Dedicated to late P. V. Lakshmaiah

ABSTRACT. The main purpose of this paper is to obtain a common fixed point for a pair of set-valued mappings of Greguš type condition. Our theorem extend Diviccaro et al. (1987), Guay et al. (1982), and Negoescu (1989).

2000 Mathematics Subject Classification. Primary 54H25, 47H10.

1. Introduction. Greguš [4] proved the following result.

THEOREM 1.1. Let C be a closed convex subset of a Banach space X. If T is a mapping of C into itself satisfying the inequality

$$\|Tx - Ty\| \leq a\|x - y\| + b\|x - Tx\| + c\|y - Ty\|$$

(1.1)

for all $x, y \in C$, where $0 < a < 1$, $0 \leq c$, $0 \leq b$, and $a + b + c = 1$, then T has a unique fixed point in C.

Mappings satisfying the inequality (1.1) with $a = 1$ and $b = c = 0$ is called nonexpansive and it was considered by Kirk [6], whereas the mapping with $a = 0$, $b = c = 1/2$ by Wong [13]. Recently, Fisher et al. [3], Diviccaro et al. [2], Mukherjee et al. [9], and Murthy et al. [10] generalized Theorem 1.1 in many ways. In this context, we prove a common fixed point theorem for set-valued mappings using Greguš type condition. Before presenting our main theorem we need the following definitions and lemma for our main theorem.

Let (X, d) be a metric space and $CB(X)$ be the class of nonempty closed bounded subsets of X. For any nonempty subsets A, B of X we define

$$D(A, B) = \inf \{d(a, b) : a \in A, b \in B\},$$

$$H(A, B) = \max \{\sup \{D(a, b) : a \in A\}, \sup \{D(a, b) : b \in B\}\}.$$

(1.2)

The space $CB(X)$ is a metric space with respect to the above defined distance function H (see Kuratowski [7, page 214] and Berge [1, page 126]). Nadler [11] has defined the contraction mapping for set-valued mappings. A set-valued mapping $F : X \to CB(X)$ is said to be contraction if there exists a real number k, $0 \leq k < 1$ such that $H(Fx, Fy) \leq k \cdot d(x, y)$, for all $x, y \in X$.

Throughout this paper $C(X)$ stands for a class of nonempty compact subset of X, $D(A, B)$ is the distance between two sets A and B.

The following Definitions 1.2, 1.3, 1.4, and 1.5 are given in [5].
Definition 1.2. An orbit for a set-valued mapping \(F: X \to CB(X) \) at a point \(x_0 \) is a sequence \(\{x_n\} \), where \(x_n \in Fx_{n-1} \) for all \(n \).

Definition 1.3. For two set-valued mappings \(S \) and \(T: X \to CB(X) \), we define an orbit at a point \(x_0 \in X \), if there exists a sequence \(\{x_n\} \) where \(x_n \in Sx_{n-1} \) or \(x_n \in Tx_{n-1} \) depending on whether \(n \) is even or odd.

Definition 1.4. The metric space \(X \) is said to be \(x_0 \)-jointly orbitally complete, if every Cauchy sequence of each orbit at \(x_0 \) is convergent in \(X \).

Definition 1.5. Let \(F: X \to CB(X) \) be continuous. Then the mapping \(x \to d(x,Fx) \) is continuous for all \(x \in X \).

Definition 1.6 [11]. If \(A,B \in C(X) \) then for all \(a \in A \), there exists a point \(b \in B \) such that \(d(a,b) \leq H(A,B) \).

Lemma 1.7 [8]. Suppose that \(\phi \) is a mapping of \([0, \infty) \) into itself, which is nondecreasing, upper-semicontinuous and \(\phi(t) < t \) for all \(t > 0 \). Then \(\lim_{n \to \infty} \phi^n(t) = 0 \), where \(\phi^n \) is the composition of \(\phi \) \(n \) times.

2. Main result

Theorem 2.1. Let \(S \) and \(T \) be mappings of a metric space \(X \) into \(C(X) \) and let \(X \) be \(x_0 \)-jointly orbitally complete for some \(x_0 \in X \). Suppose that \(p > 0 \) and for all \(x,y \in X \) satisfying:

\[
H^p(Sx,Ty) \leq \phi(ad^p(x,y) + (1-a)\max\{D^p(x,Sx),D^p(y,Ty)\}), \tag{2.1}
\]

where \(a \in (0,1) \) and \(\phi: [0, \infty) \to [0, \infty) \) is nondecreasing, upper-semicontinuous and \(\phi(t) < t \) for all \(t > 0 \). Then \(S \) and \(T \) have a common fixed point in \(X \).

Proof. Let \(x_0 \in X \). For any \(x_1 \in SX_0 \), then by **Definition 1.6**, there exists a point \(x_2 \in TX_1 \) such that \(d(x_1,x_2) \leq H(Sx_0,Tx_1) \). The choice of the sequence \(\{x_n\} \) in \(X \) guarantees that

\[
x_n \in Sx_{n-1} \quad \text{if } n \text{ is even}, \quad x_n \in Tx_{n-1} \quad \text{if } n \text{ is odd}. \tag{2.2}
\]

Now, we claim that \(d(x_1,x_2) \leq d(x_0,x_1) \). Suppose \(d(x_1,x_2) > d(x_0,x_1) \) and \(\epsilon = d(x_1,x_2) \). Then by using \((2.1)\) it follows that

\[
\epsilon = d(x_1,x_2) \leq H(Sx_0,Tx_1) \\
\leq [\phi(ad^p(x_0,x_1) + (1-a)\max\{D^p(x_0,Sx_0),D^p(x_1,Tx_1)\})]^{1/p} \\
\leq [\phi(a\epsilon^p + (1-a)\epsilon^p)]^{1/p} \\
\leq [\phi(\epsilon^p)]^{1/p} < \epsilon, \quad \text{a contradiction.} \tag{2.3}
\]

Therefore \(d(x_1,x_2) \leq d(x_0,x_1) \) and

\[
d^p(x_1,x_2) \leq H^p(Sx_0,Tx_1) \\
\leq \phi(ad^p(x_0,x_1) + (1-a)\max\{D^p(x_0,Sx_0),D^p(x_1,Tx_1)\}) \tag{2.4}
\]

\[
\leq \phi(d^p(x_0,x_1)).
\]
Similarly, we have \(d^p(x_2, x_3) \leq \phi(d^p(x_1, x_2)) \leq \phi^2(d^p(x_0, x_1)) \).

Proceeding in this way, we have

\[
d^p(x_n, x_{n+1}) \leq \phi^n(d^p(x_0, x_1)) \quad \text{for } n = 0, 1, 2, \ldots
\] (2.5)

By Lemma 1.7, it follows that \(\lim_{n \to \infty} d^p(x_n, x_{n+1}) = 0 \), that is,

\[
\lim_{n \to \infty} d(x_n, x_{n+1}) = 0
\] (2.6)

In order to prove that \(\{x_n\} \) is a Cauchy sequence, it is sufficient to show that \(\{x_{2n}\} \) is a Cauchy sequence. Suppose that \(\{x_{2n}\} \) is not a Cauchy sequence. Then there is an \(\varepsilon > 0 \) such that for a sequence of even integers \(\{n(k)\} \) defined inductively with \(n(1) = 2 \) and \(n(k+1) \) is the smallest even integer greater than \(n(k) \) such that

\[
d(x_{n(k+1)}, x_{n(k)}) > \varepsilon.
\] (2.7)

So that

\[
d(x_{n(k+1)-2}, x_{n(k)}) \leq \varepsilon.
\] (2.8)

It follows that

\[
\varepsilon < d(x_{n(k+1)}, x_{n(k)})
\]

\[
\leq d(x_{n(k+1)}, x_{n(k)-1}) + d(x_{n(k)-1}, x_{n(k)-2}) + d(x_{n(k)-2}, x_{n(k)})
\] (2.9)

for \(k = 1, 2, 3, \ldots \) Using (2.6) and (2.8) it follows that

\[
\lim_{k \to \infty} d(x_{n(k+1)}, x_{n(k)}) = \varepsilon.
\] (2.10)

By the triangle inequality, we have

\[
|d(x_{n(k+1)}, x_{n(k)}) - d(x_{n(k)}, x_{n(k)-1})| \leq d(x_{n(k+1)}, x_{n(k)-1}),
\]

\[
|d(x_{n(k)-1}, x_{n(k)+1}) - d(x_{n(k+1)}, x_{n(k)})| \leq d(x_{n(k+1)}, x_{n(k)-1}).
\] (2.11)

It follows from (2.6) and (2.10) that

\[
\lim_{k \to \infty} d(x_{n(k)}, x_{n(k)-1}) = \lim_{k \to \infty} d(x_{n(k+1)-1}, x_{n(k)+1}) = \varepsilon.
\] (2.12)

Using (2.6), we have

\[
D(x_{n(k+1)}, x_{n(k)}) \leq d(x_{n(k+1)}, x_{n(k)+1}) + d(x_{n(k)+1}, x_{n(k)})
\]

\[
\leq H(Sx_{n(k+1)-1}, Tx_{n(k)}) + d(x_{n(k)+1}, x_{n(k)})
\] (2.13)

and using (2.1), we have

\[
H^p(Sx_{n(k+1)-1}, Tx_{n(k)})
\]

\[
\leq \phi(ad^p(x_{n(k)+1}, x_{n(k)}) + (1-a) \max \{D^p(x_{n(k+1)-1}, Sx_{n(k+1)-1}), D^p(x_{n(k)}, Tx_{n(k)})\}).
\] (2.14)

Using (2.8), (2.10), (2.13), (2.14), and upper semi-continuity of \(\phi \) it follows by letting \(k \to \infty \) that

\[
\varepsilon \leq [\phi(a \varepsilon^p)]^{1/p} \leq [\phi(\varepsilon^p)]^{1/p} < \varepsilon,
\] (2.15)
a contradiction. Therefore, \(\{x_{2n}\} \) is a Cauchy sequence in \(X \) and since \(X \) is \(x_0 \)-jointly orbitally complete metric space, so the sequence \(\{x_n\} \) of each orbit at \(x_0 \) is convergent in \(X \). Therefore there exists a point \(z \in X \) such that \(x_0 \to z \).

Then again using (2.1), we have

\[
D^p(x_{2n-1}, Tz) \leq H^p(Sx_{2n-2}, Tz) \\
\leq \phi(aD^p(x_{2n-2}, z) + (1-a) \max\{D^p(x_{2n-2}, Sx_{2n-2}), D^p(z, Tz)\})
\]
(2.16)

or equivalent to

\[
D^p(x_{2n-1}, Tz) \leq \phi(aD^p(x_{2n-2}, z) + (1-a) \max\{D^p(x_{2n-2}, Sx_{2n-2}), D^p(z, Tz)\}).
\]
(2.17)

Now taking \(n \to \infty \) in (2.17), then we have \(D^p(z, Tz) \leq \phi((1-a)D^p(z, Tz)) \) if \(z \notin Tz \), a contradiction. Thus \(z \in Tz \).

Similarly, we show that \(z \in Sz \). Hence, \(z \in Sz \cap Tz \). This completes the proof.

Open problem. What further restrictions are necessary for the convergence of the sequence \(\{x_n\} \) if \(\phi \) is dropped from (2.1)?

Acknowledgement. The authors would like to express their deep gratitude to the referee for helpful comments and suggestions to present the original paper into this form.

References

M. R. Singh: Department of Mathematics, Manipur University, Canchipur, Imphal, 795 003, Manipur, India

L. S. Singh: Department of Mathematics, D.M. College of Science, Imphal, 795 001, Manipur, India

P. P. Murthy: Department of Mathematics, Arignar Anna Government Arts College, Karaikal, Pondichery, U.T.-609605, India
Submit your manuscripts at
http://www.hindawi.com